柔性磁致伸缩触觉传感阵列设计及物体识别

来源 :河北工业大学 | 被引量 : 0次 | 上传用户:tywuyaohuan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
触觉传感器是机器人实现智能感知的关键器件,在信息交互和传感认知过程中发挥十分重要的作用。近年来柔性电子学快速发展,基于不同机理的柔性触觉传感器不断涌现,但磁性触觉传感器由于材料和结构的限制,在构建柔性化、小型化、集成度高的感知系统方面进展缓慢。面对复杂的环境,现有单一磁性触觉传感器由于柔性缺失,接触点少等原因无法完全满足智能机械手对触觉信息的检测需求。为此,本文设计一种柔性磁致伸缩触觉传感阵列,对传感阵列的输出特性和应用进行研究。基于自然界中生物的毛发感知系统,本文采用磁致伸缩材料Galfenol细丝设计了一种仿生磁致伸缩触觉传感单元,根据逆磁致伸缩效应、线性压磁方程和材料力学原理建立传感单元的输出特性模型。通过仿真和实验对传感单元进行了结构优化,确定了最佳偏置磁场,霍尔元件位置及细丝参数。实验测试了传感单元的静态和动态输出特性,该传感单元对接触力的线性检测范围为0~3 N,灵敏度为14.52 m V/N,对1~4Hz的动态力响应良好,响应时间小于100 ms。磁致伸缩传感单元结构简单,体积微小,易于集成阵列。为了实现多触点信息检测,设计了3×3触觉传感阵列,采用仿真软件分析了磁场-应力场耦合作用下,传感阵列中横向和纵向永磁体对细丝上磁场分布以及单元输出结果的影响,通过共用永磁体和控制纵向距离的方式降低了阵列中的磁场干扰。制作了传感阵列样机并进行柔性封装,传感阵列的灵敏度为47.76 m V/N,磁场干扰影响下非受力单元输出与受力单元输出的最大占比不超过7%,不同位置的传感单元迟滞性和重复性基本一致,对接触力反应灵敏。将触觉传感阵列安装到二指机械手的指节上,在抓取具有不同特征(形状、硬度、尺寸)的模具时,柔性传感阵列能顺应机械手指的弯曲更好地贴合物体,根据输出电压波形可以提取识别物体的特征值。设计了BP神经网络算法用以识别具有平面、柱面和球面特征的日常用品,选择传感阵列输出电压、接触物体时触点数和机械手稳定抓取时位置作为特征值,经过算法学习后对不同特征的物体识别率达到90%以上。结果表明,研制的磁致伸缩触觉传感阵列能够有效应用于目标物体识别。
其他文献
以光伏发电为代表的分布式能源在解决气候变暖、环境污染等问题上发挥着重大作用。直流微电网作为将分布式电源、DC-DC变换器和各种负载相整合的有效方式,因为其效率高、控制方便等优点成为国内外研究热点。然而,恒功率负载的负阻抗特性可能会导致电压崩溃,并且变换器并联运行时线路阻抗的不同会造成母线电压下降与功率分配不均,这些问题不利于直流微电网的协调稳定运行。因此,本文以实现DCDC变换器并联协调稳定运行为
学位
科教兴国战略实施以来,国家高等教育经费投入逐年增加,高等院校资金流成倍增长,办学规模不断扩大,“放管服”背景下,高校自主权不断提高,面临风险越来越多;高校内控体系发展相对滞后,政府采购领域腐败问题频发,严重影响高校健康发展,更造成国有资产流失。腐败问题产生的原因很多,高校相关内部控制与高校迅速发展不相适应,客观上成为政府采购活动产生风险、滋生腐败的土壤。加强高校政府采购内部控制体系建设研究,提高高
学位
随着全社会用电量的不断攀升,电气火灾事故也逐年增加。低压配电系统电气火灾约占火灾事故总数的30%,而其中超过40%的电气火灾由故障电弧引起,故障电弧已成为低压配电系统电气火灾事故的最主要诱因。传统电弧故障检测方法基于电弧电流的时频域特征,并依赖人为设定的故障电弧识别阈值。然而,低压配电系统的非线性负载不断增多,其正常工作时产生的高频干扰与串联故障电弧电流可能处于相近频段,容易引起传统电弧故障检测方
学位
互联网的迅猛发展使大众在信息获取、娱乐消费、在线办公等方面获得了极大便利,与此同时也成为了滋生新型网络犯罪的温床。网络诈骗分子瞄准法律法规及制度漏洞,利用受害者趋利避害心态,实施各种精准化非接触式诈骗,严重侵害人民群众的财产安全,极大影响社会的公平稳定。电信网络诈骗涵盖通讯、金融、网络平台、软件开发等多个领域,犯罪主体多、涉及范围广、隐蔽性较强,使得公安机关实施打击较为被动。因此,探寻多元主体下的
学位
光伏发电的高渗透造成微电网频率和电压的不稳定,原因主要包括两个方面,一方面是光伏发电输出功率具有波动性,使得微电网受到的扰动加剧;另一方面是光伏发电微电网的惯性和阻尼较低,抑制波动的能力较差。为提高光伏发电微电网的稳定性,本文研究光伏发电输出功率预测模型和虚拟同步发电机控制策略,用于准确预测光伏输出功率和提高微电网的惯性和阻尼。将两方面研究结合,提出基于光伏发电输出功率预测的虚拟同步发电机控制策略
学位
《中华人民共和国监察法》(以下简称《监察法》)与《中华人民共和国监察法实施条例》(以下简称《条例》)的颁布与实施,可以实现党对反腐败工作的有效领导,是建立中国特色监察制度的伟大创举,更是创建集中统一的国家监察体系的必然要求,表明了我党反腐倡廉的决心以及对腐败“零容忍”的态度。监察证据作为链接法律事实与客观事实的主要媒介,在查明案件、惩戒腐败中举足轻重。但考虑到监察程序中适用的非法证据排除规则存在一
学位
半导体技术的相对成熟使得功率电力开关器件在结构与性能上得到巨大改善,各种电源设备也因此而得到飞速发展并被广泛应用于各个领域之中。作为能源动力,电源保障着生产工作的正常运行。在电源出厂前,需要对电源进行严格的带载测试以保证其质量的可靠性。传统方法是直接利用电阻、电感和电容等实物器件进行电源带载测试,存在实验成本大、能量消耗严重、负载变换不灵活等诸多缺点。为解决以上问题,针对一种基于现场可编程门阵列(
学位
迷走神经在人体中占有重要的战略地位,是自主神经系统的关键组成部分,参与多个系统的调节,可以影响大量的生理过程和身体状态。对迷走神经的耳部分支进行电刺激可以无创激活迷走神经,目前已经成为生物电子医学领域中一种炙手可热的新兴技术,并在多种疾病的治疗中得到应用。然而,鲜有文献研究耳迷走神经电刺激(ta VNS)对自主神经功能的影响,其最佳刺激参数也尚未得知。鉴于众多疾病均与自主神经系统失衡相关,而心率变
学位
触头作为继电器中频繁使用的部件,其故障率占继电器故障的90%,因此触头性能的好坏影响着继电器的可靠性和使用寿命。然而触头表面在长时间的接触中,会因为摩擦、高温使接触电阻增大,因此本文拟通过改进触头材料来改善现状。AgSnO2材料作为电接触材料,在使用过程中由于触头之间的碰撞挤压形成高温电弧,冷却后析出SnO2晶体,而其作为宽禁带半导体导电性较差,附着在触头材料表面,导致接触电阻增大影响触头的使用寿
学位
随着第四次工业革命的到来,智能机器人产业得到飞速发展,具有触觉感知是这些设备的基本特征,但是三维触觉传感器还没有成熟的技术方案。利用柔性聚合物间的电荷迁移特性可将触压转化为电信号,本文对柔性三维触觉传感器的关键技术进行研究。(1)触觉敏感材料研究。研究摩擦起电的电荷转移规律,对比分析多种摩擦起电材料的正负极性;对氧化锌(Zn O)和聚二甲基硅氧烷(PDMS)组成的复合材料进行研究,分析不同配比和工
学位