基于电容与摩擦电机理的柔性复合传感器及其机器触觉应用

来源 :深圳大学 | 被引量 : 0次 | 上传用户:gexuefeng1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
机器人市场对触觉传感技术有着巨大的需求,本文分析了国内外触觉传感器以及目标物体识别方法的研究现状,设计了一种新型的可应用于机器人触觉系统的基于电容与摩擦电机理的柔性复合传感器。该传感器可以测量目标物体的硬度和表面材质信息,器由一个以多孔聚合物PDMS(聚二甲基硅氧烷)为电容介质的电容传感器和单电级摩擦发电电极结构复合而成。其中单电级摩擦发电的摩擦层与电容的电介质层是通过将PDMS与NaCl的混合物填充经过巧妙设计的模具一体成型,再固化、盐析形成多孔PDMS结构,与带有三电极板的双面FPC(柔性电路板)进行粘合,得到可测量目标物体信息的复合触觉传感器。兼顾可应用于智能机械手臂上的复合传感器高灵敏度和压力测量量程以及结构耐用性等需求,本文提出了低成本、易控制、环保性高的制备柔性复合触觉传感器方法。对该柔性复合式传感器中的硬度测量原理和摩擦生电原理进行阐述。通过对复合传感器中的电容和摩擦电两个模块所获得的实验数据进行处理和分析,分别获得复合触觉传感器的应力-电容变化曲线和不同材料接触产生的摩擦电电压信息。当复合传感器与压头表面接触时的压力(压强)越大,电容变化量越大。当不同材质的物体与复合传感器接触时在摩擦电压信号上表现出明显的差异(主要表现在摩擦电电压大小以及正负方向)。该柔性复合传感器选择的制备参数为PDMS:NaCl=1:2,可测量范围在0-200 kpa,器件响应时间可达9ms,在循环3000次以上后仍然能够保持稳定的性能。本文在后续应用实验中搭建了智能触觉测量系统,该系统基于智能机械手臂和基于电容与摩擦电机理的柔性复合传感器开发。首先在大量实验下对系统进行调试分析从而把握抓取物体的程序参数设定,然后再进行现实场景抓握模拟实验,分别对常见球类(桌球,网球,训练球等),以及常见水果(猕猴桃,柿子,芒果等)进行无伤害抓握识别或者水果生熟判断测试。通过综合分析抓握过程中的复合传感器两种电学信号(电容信号和摩擦电信号)得出实验结果:本课题的复合触觉传感器能够有效的识别与区分不同的被测物体种类的同时还能初步判断物体的硬度等级、目标物体是否损坏以及水果生熟与否。人类对目标物体识别是一个综合性的识别过程,为了缩进机器人触觉与人类触觉的差距,最后对机器人智能触觉系统的进一步研究开发提出展望。
其他文献
第一部分探索TCST干预PAH大鼠的最佳时间目的:交感神经过度激活已被证明是引起肺动脉高压(pulmonary arterial hypertension,PAH)的原因之一,本部分主要检测颈交感神经干离断(transection of the cervical sympathetic trunk,TCST)是否可以抑制PAH大鼠肺动脉压力的升高,并且探索其最佳的干预时间。方法:随机将40只雄性S
目的:1.使用经颅多普勒(Transcranial Doppler,TCD)和指尖无创连续血压仪(beat-to-beat)相结合的方法监测评估急性脑梗死(acute ischemic stroke,AIS)患者动态脑血流自动调节(dynamic cerebral autoregulation,dCA)能力。2.探究急性脑梗死患者脑血流自动调节功能和90天预后的相关性。方法:本研究纳入2017年9
目的:铁过载导致器官功能障碍是重型β-地中海贫血(β-TM)患者常见的临床问题。本研究应用MRI T2*技术评估β-TM患者脑组织(尾状核头部、背侧丘脑、豆状核、半卵圆中心)铁含量,同时对符合年龄要求的患儿进行神经心理行为检查,探讨β-TM患儿脑组织铁含量与神经心理行为的关系。方法:选取深圳市第二人民医院儿科收治住院的长期规律输血的β-TM患者共42例,收集年龄、性别、血清铁蛋白、首次输血年龄、祛
在过去的几十年里,以人类皮肤为灵感的柔性电子因其在健康监测和诊断、机器人和假肢方面的潜在应用前景而引起了广泛的研究关注。柔性压力传感器是目前柔性电子发展的重要方向,其具有机理简单、成本低、易于信号采集和转换的优点;液态金属是一种在保持高导电性的同时又能变形的材料,克服了传统固体材料所引起的皱纹和断裂失效。柔性压力传感器必须满足在变形时仍可以工作,所以基于液态金属的柔性压力传感器有很大应用前景和发展
电化学储能系统对现代生活日趋重要,其中,锂离子电池由于高比能长寿命而备受关注,但是锂离子电池电解液易燃、电池材料昂贵和锂资源全球储量低等问题限制着其在大规模储能系统领域的发展。相较于锂离子电池,碱性可充电电池具备了许多优异的特点。例如,水系电解质提高了电池的安全稳定性,电极原材料储量和产量丰富且成本较低,以及环境友好等。然而,碱性可充电电池存在着能量密度较低的问题,限制着其进一步发展。在众多碱性可
随着绿色、环保、可持续的发展理念在全球范围的不断推广,由于节能、环保、寿命长、体积小等诸多特点,以发光二极管(Light Emitting Diode,LED)为核心的新一代照明光源受到各国的高度重视并已被大量普及。与传统电光源相比,LED的响应时间可达毫微秒量级,具备了无线通信的潜质,许多科学家由此开展了兼具通信与照明功能的新型通信方式——可见光通信技术(Visible Light Commun
太阳光谱是人类经过漫长历史长期适应了的自然光谱,因此,是成为人眼最舒适、最健康以及最符合视觉机能需求的光谱。目前,虽然人造电光源中的氙灯和溴钨灯的光谱非常的接近太阳光谱,但都存在诸如光效低、寿命短等诸多缺点。在近十年中,随着白光发光二极管(Light Emitting Diode,LED)的快速发展,从最初强调LED的光效和成本开始,人们逐渐开始了对光质量和健康的追求。与传统的光源相比LED有许多
在室外定位广泛应用的今天,现代化工厂、商业综合体、城市图书馆等大型室内场所越来越多,对室内定位服务的需求日渐强烈,但室内定位技术还有待进一步发展。现有的基于蓝牙、WiFi、Zigbee等无线通信技术的室内定位系统都有各种的不足之处,要么定位精度低,要么成本太高,要么实现难度大。可见光通信技术作为新一代无线通信技术,集照明与通信于一体,不产生电磁干扰,为室内定位的实现指明了新的方向。本论文对可见光通
目的:构建乳腺癌患者腋窝淋巴结清扫术前评估模型,在一定程度上避免腋窝淋巴结阴性的乳腺癌患者行前哨淋巴结活检或腋窝淋巴结清扫术。方法:收集2015年1月至2019年12月深圳市第二人民医院已确诊为乳腺癌且行腋窝淋巴结清扫术患者的年龄、影像学资料(肿块位置、腋窝淋巴结状态)以及病理学资料(肿瘤大小、病理类型、核分级、有无脉管浸润、雌激素受体(Estorgen receptor,ER)、孕激素受体(Pr
随着5G技术的商业应用的增加,电子设备也会激增,因此对供能设备的需求也增大。同时电子设备是可穿戴、可植入的发展趋势,传统电池因为其体积大、基底硬、续航时间短、需频繁充电、污染环境等问题都与未来趋势背道而驰,因此供能设备需要不断的改善。为了解决电子设备的供能问题,解决策略是将人们触手可得的能量收集起来供给电子设备。人体的机械能取之不尽用之不竭,同时还不受天气、地点等因素的影响,并且与可穿戴设备的工作