论文部分内容阅读
基于聚硅酸铁(PSF)优异性能探究其短时“混凝-沉淀-过滤”工艺(以下简称短时工艺)效果,以腐殖酸模拟水为试验水样,考察PSF短时“混凝-沉淀”效果,与其普通“混凝-沉淀”及复合铝铁(PFA)作对比,测量分形维数以分析絮体特征;通过自制过滤装置探究PSF短时工艺效果,分析过滤因素的影响,并利用相机及扫描电镜(SEM)对絮体及滤料进行观察;采用计算流体力学(CFD)模拟过滤装置,分析流场压力及速度变化;最后对PSF短时工艺的机理作了分析。
(1)PSF短时“混凝-沉淀”工艺条件:投加量、絮凝时间和沉淀时间分别为6mg/L、4min和3min。PSF短时“混凝-沉淀”除浊、除色率均约为92%,与普通“混凝-沉淀”效果差异较小,反应时间却节省近62%;PFA短时“混凝-沉淀”除浊除色率均仅约70%。显微镜下PSF短时及普通“混凝-沉淀”絮团呈现红褐色,分形维数较大,PFA絮团分形维数较小,颜色较浅。
(2)PSF短时工艺出水水质及过滤周期均远优于PFA短时工艺及普通“混凝-沉淀-过滤”工艺(以下简称普通工艺),与PSF普通工艺相比,PSF短时工艺过滤周期稍短,但出水水质差异不明显。滤层厚度对PSF短时工艺出水水质影响不大,对过滤周期有一定影响,30cm、70cm、50cm滤层厚度的过滤周期分别为14h、18h、20h;滤速对PSF短时工艺除浊除色效果影响较小,对去除UV254、CODMn影响较明显;滤料粒径越大过滤周期越长,1~2mm、2~3mm粒径时的过滤周期分别为55h、74h,并且出水水质差距较小。
(3)通过数值模拟得出,滤层厚度或滤速越大的过滤流场,其内压力越大,压力值沿水流方向逐渐减小,同一水平高度的压力值近似相等。过滤流场(除滤层部分)内的速度受边壁黏性影响较明显,同一高度水平面上速度值并非常数;但由于多孔介质(滤层)较为理想化,滤层内速度较为一致。
(4)利用普通相机及SEM观察得出,PSF短时与普通“混凝-沉淀”产生的絮体尺寸均较大,并且两者间差异不明显,PFA产生絮体尺寸较小;PSF短时工艺的滤料表面杂质附着较少,污染程度较弱,PFA短时及普通工艺滤料表面均呈现杂质堆积的形貌。机理分析:混凝沉淀过程中,PSF基于结构及组成上的优势,脱稳、架桥及网捕卷扫效率高,形成分形维数较大、密实的絮团,沉淀效率高,絮体可被滤料充分粘附拦截,出水水质好,满足水质要求情况下有较长过滤周期。
(1)PSF短时“混凝-沉淀”工艺条件:投加量、絮凝时间和沉淀时间分别为6mg/L、4min和3min。PSF短时“混凝-沉淀”除浊、除色率均约为92%,与普通“混凝-沉淀”效果差异较小,反应时间却节省近62%;PFA短时“混凝-沉淀”除浊除色率均仅约70%。显微镜下PSF短时及普通“混凝-沉淀”絮团呈现红褐色,分形维数较大,PFA絮团分形维数较小,颜色较浅。
(2)PSF短时工艺出水水质及过滤周期均远优于PFA短时工艺及普通“混凝-沉淀-过滤”工艺(以下简称普通工艺),与PSF普通工艺相比,PSF短时工艺过滤周期稍短,但出水水质差异不明显。滤层厚度对PSF短时工艺出水水质影响不大,对过滤周期有一定影响,30cm、70cm、50cm滤层厚度的过滤周期分别为14h、18h、20h;滤速对PSF短时工艺除浊除色效果影响较小,对去除UV254、CODMn影响较明显;滤料粒径越大过滤周期越长,1~2mm、2~3mm粒径时的过滤周期分别为55h、74h,并且出水水质差距较小。
(3)通过数值模拟得出,滤层厚度或滤速越大的过滤流场,其内压力越大,压力值沿水流方向逐渐减小,同一水平高度的压力值近似相等。过滤流场(除滤层部分)内的速度受边壁黏性影响较明显,同一高度水平面上速度值并非常数;但由于多孔介质(滤层)较为理想化,滤层内速度较为一致。
(4)利用普通相机及SEM观察得出,PSF短时与普通“混凝-沉淀”产生的絮体尺寸均较大,并且两者间差异不明显,PFA产生絮体尺寸较小;PSF短时工艺的滤料表面杂质附着较少,污染程度较弱,PFA短时及普通工艺滤料表面均呈现杂质堆积的形貌。机理分析:混凝沉淀过程中,PSF基于结构及组成上的优势,脱稳、架桥及网捕卷扫效率高,形成分形维数较大、密实的絮团,沉淀效率高,絮体可被滤料充分粘附拦截,出水水质好,满足水质要求情况下有较长过滤周期。