论文部分内容阅读
白果(Ginkgo Semen)为银杏科植物银杏的Ginkgo bilobo L.的干燥成熟种子,首载于《日用本草》。白果是常用的有止咳平喘作用的中药,具有敛肺定喘的功效,常用于治疗痰多咳喘等症。目前有关白果止咳作用物质基础的报道较少,课题组前期基于白果的止咳作用,从白果中分离得到了化合物(2-1-((2R,3R,4S,5S,6R)-3,4,5-三羟基-6-(羟甲基)四氢-2H-吡喃-2-基)-1H-吲哚-3-基)乙酰基)-L-天冬氨酸(GK-A),药效学实验结果表明该化合物有明显的止咳作用,有开发为止咳新药的潜力。为了解GK-A在体内的处置过程,本文以GK-A为研究对象,对GK-A在体内的药动学、肠吸收、组织分布、体内外代谢和排泄特征进行了系统研究,以阐明GK-A的体内处置过程,为GK-A及白果的深入研究和止咳新药的研究开发奠定实验基础。1.GK-A的分离纯化首先利用大孔树脂纯化出白果中GK-A含量高的活性部位,再利用制备色谱反复纯化,制备出纯度≥98%的GK-A约5 g,为GK-A的药代动力学及其他相关研究提供了样品基础。2.GK-A的药代动力学研究首先建立了 UPLC-MS/MS测定大鼠血浆中GK-A含量的方法,以异槲皮苷为内标,采用电喷雾(ESI)离子源,在正离子模式下用多反应离子监测(MRM)模式进行测定。结果表明GK-A在浓度为37.5-7500.0ng·mL-1的范围内线性关系良好,r2>0.99,定量下限(LLOQ)为37.5 ng·mL-1,回收率>85%,建立的方法专属性好,精密度、准确度和稳定性均符合生物样品分析的要求,无明显的基质效应。大鼠分别灌胃剂量为15、30、60mg·kg-1的GK-A和静脉注射剂量为1 mg·kg-1的GK-A后测定给药后大鼠体内GK-A的血药浓度,绘制药时曲线并计算药代动力学参数和绝对生物利用度。灌胃后GK-A各浓度(15、30、60 mg·kg-1)的达峰时间(Tmax)分别为 1.667±0.683,1.500±0.447,1.500±0.447h,各浓度(15,30,60 mg·kg-1)的半衰期(t1/2)分别是 0.429±0.089,0.682±0.571,1.619±1.271 h,静脉注射的t1/2是0.500±0.037 h。研究结果表明经灌胃给予的GK-A在大鼠体内吸收较慢,消除速度快,绝对生物利用度低1.83±0.09%。3.GK-A的吸收研究首先利用HPLC研究了 GK-A在模拟胃肠道环境中的稳定性,结果表明GK-A在不同pH的缓冲溶液(pH 1.2、6.8、7.4)、人工胃液、人工肠液和小肠道内容物中稳定性良好,而在大鼠肠道内容物中有部分的降解。接着利用大鼠在体单向肠灌流模型研究GK-A在大鼠各个肠段中的吸收行为,利用HPLC测定不同时间点灌流液中GK-A的浓度,计算吸收速率常数(Ka)和有效渗透系数(Peff),结果表明GK-A在大鼠的各个肠段都有一定的吸收,无特异性的吸收部位,属于难吸收成分。在pH 6.5和7.4的灌流液中GK-A的吸收无显著差异;加入P-糖蛋白抑制剂盐酸维拉帕米和多药耐药相关蛋白2抑制剂吲哚美辛后GK-A的吸收参数无明显变化,说明GK-A不是P-糖蛋白和多药耐药相关蛋白2的底物。4.GK-A的组织分布研究首先研究了 GK-A与大鼠血浆蛋白的结合率,建立了UPLC-MS/MS测定磷酸盐缓冲液(PBS)中GK-A含量的方法,以异槲皮苷为内标,采用电喷雾(ESI)离子源,在正离子模式下用多反应离子监测(MRM)进行测定。结果表明GK-A在浓度为25.0-2500.0 ng·mL-1的范围内线性关系良好,r2>0.99,定量下限为25.0ng·mL-1,回收率>85%,方法的专属性好,精密度、准确度和稳定性均符合生物样品分析的要求。结果表明GK-A与血浆蛋白的结合率为34.0±2.2%,属于低强度的结合,在研究的范围内无浓度依赖性。接着建立了 UPLC-MS/MS测定大鼠组织(心、肝、脾、肺、肾、脑、胃)匀浆中的GK-A含量的方法,以(2-(1-((2R,3R,4S,5S,6R)-3,4,5-三羟基-6-(羟甲基)四氢-2H-吡喃-2-基)-1H-吲哚-3-基)乙酰基)-L-谷氨酸(GK-2)为内标,采用电喷雾(ESI)离子源,在正离子模式下用多反应离子监测(MRM)进行测定。结果表明GK-A在浓度为0.018-4.500μg·mL-1的范围内线性关系良好,r2>0.99,定量下限为0.018 μg·mL-1,回收率>70%,方法的专属性好,精密度和准确度,稳定性均符合生物样品分析的要求,无明显的基质效应。静脉注射给予大鼠剂量为1 mg·kg-1的GK-A后,测定不同组织中GK-A的分布情况。结果表明GK-A在大鼠体内分布广泛,给药后0.5 h即可在除脑组织外各组织中检测到GK-A,其中在肾组织中分布量最大,推测吸收入血的GK-A可能主要经过肾脏排除体外,由于在脑组织中检测不到GK-A,推测GK-A难以透过血脑屏障到达脑部。GK-A在组织中消除速度快,给药6h后基本从各组织中消除完全,说明GK-A不易在组织内蓄积。5.GK-A的代谢研究利用UPLC-QTOF-MS/MS研究了 GK-A在体内外的代谢情况。分别收集GK-A与肠道菌群体外孵育的孵育液,给药后大鼠的尿液、粪便和胆汁,根据GK-A在质谱中的裂解规律,共鉴定出GK-A的4个代谢物,其中肠道是GK-A发生代谢转化的主要场所。GK-A的代谢反应类型包括脱糖代谢反应,羟基化反应,甲基化反应和水解反应。6.GK-A的排泄研究建立了 UPLC-MS/MS测定大鼠胆汁和尿液中GK-A含量的方法,以GK-2为内标,采用电喷雾(ESI)离子源,在正离子模式下用多反应离子监测(MRM)进行测定。结果表明GK-A和MS1在浓度为0.12-15.00 μgmL-1的范围内线性关系良好,r2>0.99,定量下限为0.12 μg·mL-1,回收率大于85%,方法的专属性好,精密度、准确度、稳定性均符合生物样品分析的要求,无明显的基质效应。灌胃给予大鼠剂量为15 mg·kg-1的GK-A,在给药后的0-72 h,GK-A在大鼠尿液累计排泄率为0.58±0.26%;灌胃给予大鼠剂量为15 mg·kg-1的GK-A,在给药后的0-24 h,在大鼠胆汁中累计排泄率为0.95±0.27%。接着采用化学合成的方法合成了GK-A在体内的主要代谢物MS1,然后利用UPLC-MS/MS的方法测定了大鼠粪便中GK-A和MS1的含量,以GK-2为内标,采用电喷雾(ESI)离子源,在负离子模式下用多反应离子监测(MRM)进行测定。结果表明GK-A在浓度为0.12-30 μg·mL-1的范围内线性关系良好,r2>0.99,定量下限为0.12μg·mL-1,回收率大于85%,方法的专属性好,精密度、准确度,稳定性均符合生物样品分析的要求,无明显的基质效应。灌胃给予大鼠剂量为15 mg·kg-1的GK-A后,以GK-A的总量计算,在给药0-72h后GK-A在大鼠粪便中的累计排泄率为59.83±6.48%,说明粪便排泄是GK-A灌胃给药后的主要排泄途径。综上所述,白果中止咳化合物GK-A的口服生物利用度低,在模拟胃肠道环境中稳定,但在大肠内容物中会发生一定的降解,不易被吸收。吸收入血的GK-A有中低强度的血浆蛋白结合,吸收入血后在各个组织中均有一定的分布,在肾组织中的分布量最大,但难以透过血脑屏障分布到脑组织中。GK-A主要在肠道菌群的作用下发生代谢,口服GK-A后主要经粪便排出体外。