【摘 要】
:
问答系统在生活与工业中有着广泛的应用,比如智能客服、智能音箱等。但目前的问答系统大都是静态的,一旦训练并部署后,无法再进行知识更新,用户与问答系统的交互语料也没有得到充分利用。即使获得了交互预料,但由于深度神经网络的灾难性遗忘特性,直接使用获取的新交互语料数据训练模型,会导致模型在之前数据上的表现变差。针对以上问题,本文构建了持续学习问答系统框架,处理并存储用户交互信息,并提出了持续学习的关系抽取
论文部分内容阅读
问答系统在生活与工业中有着广泛的应用,比如智能客服、智能音箱等。但目前的问答系统大都是静态的,一旦训练并部署后,无法再进行知识更新,用户与问答系统的交互语料也没有得到充分利用。即使获得了交互预料,但由于深度神经网络的灾难性遗忘特性,直接使用获取的新交互语料数据训练模型,会导致模型在之前数据上的表现变差。针对以上问题,本文构建了持续学习问答系统框架,处理并存储用户交互信息,并提出了持续学习的关系抽取算法解决灾难性遗忘问题,同时提出对抗样本搜方法增强模型鲁棒性。本文的主要工作如下:从问答系统整体框架结构入手,本文提出了一种基于知识库的持续学习的问答系统框架。在问答系统中增加输入文本分类、问题生成等与用户反馈相关的模块,问答系统能适时向用户询问,并对用户的反馈进行处理,从用户答案中构建三元组和样本,三元组存入知识库,样本供训练模型使用。实验结果表明本文提出的持续学习问答系统可以通过交互信息提高系统表现,具有持续学习效果。问答系统要实现持续学习能力,除了需要持续学习的框架外,还需要组成问答系统的模型也具有持续学习能力。因为系统部署后会持续产生新的语料数据,系统中如关系预测模型等需要不断从新数据上学习以适应新的数据。如果在新数据上直接训练模型,模型会发生灾难性遗忘问题。针对该问题,本文提出了基于模型参数线性联通性的持续学习关系抽取算法。该算法在新任务数据上训练模型时,通过优化参数保证最终模型参数与训练前模型参数的线性路径上损失不增加,从而保证模型不会遗忘已学习的任务知识,实现持续学习。该算法另外使用回放样本与新任务数据一起间隔交替训练模型,巩固模型知识,减缓模型遗忘。在多个数据集上的实验结果表明,本文的持续学习关系抽取算法相比于其他持续学习关系抽取算法有更好的持续学习效果。部署后的持续学习问答系统虽然能持续获取语料数据,但单个任务对应的数据较为稀少。针对单个任务样本较少、训练模型不鲁棒的问题,本文提出了基于量子行为粒子群优化算法的对抗样本搜索算法。相比于其他对抗样本搜索算法,本文使用的量子行为粒子群优化算法有更好的全局搜索能力。本文算法先基于义原找到文本中每个词的替代词组成样本搜索空间。然后针对文本空间的离散性,对量子行为粒子群优化算法进行改进,使用改进的算法搜索样本,同时结合了变异操作引入随机性。多个数据集上的实验结果证明了本文算法在搜索对抗样本上的有效性,具体的案例分析直观地说明了本文算法得到的对抗样本有更好的质量。本文从持续学习问答系统结构框架、关系抽取模型算法、模型鲁棒性三个方面对持续学习的问答系统进行了研究。同时在相应的数据集上通过实验验证了有效性。本文的研究对问答系统的在真实场景下的应用有一定意义,但还需更多相关研究推动问答系统的进一步落地。
其他文献
锅式杀青是由茶农在锅内翻炒茶叶,并根据茶叶气味及颜色的差异及时调节锅温,改变茶叶受热量。因人工感官反馈控制的优势,这种杀青方式主要用来处理名贵茶叶。然而受主观因素和环境因素的影响,这种杀青方式均一性较差,且手工控制锅温,耗费人力。因此,本文以绿茶鲜叶为实验材料,利用PEN3电子鼻和视觉在线检测技术代替人的嗅觉和视觉,对不同恒定锅温杀青过程中绿茶气味和颜色进行测量并对其变化规律及变化机理进行研究,同
近年来,随着网络、大数据、人工智能的飞速发展,在网络成为人们生活中不可或缺的一部分的同时,自媒体行业也日益壮大。网络中不可避免的呈现出一些非合规图片。这不仅污染了网络环境,也在一定水平上影响到了人们的身心健康。其次,在信息时代的成长下,深度学习成为这个范畴比较突出的一个方面。一般来说,深度学习会耗费了大批的计算力和内存等。对神经网络来讲,神经网络越精密,所获得的成果就会越准确。这使得经过深度学习后
艺术品的量化评估是实验美学、计算美学、计算机艺术、人工智能艺术等许多领域的基础。计算美学领域的研究集中于图形艺术客观物理特征的测量和计算,而实验美学领域的研究则集中于主观心理感受的量化。这些研究为审美对象提出了多样化的美学评估指标和方法,但在很大程度上忽略了书画作品的“可追溯感”的美学评估。可回溯感是艺术欣赏和临摹中想象地再现原作创作行为的一种审美体验,其本质是与创作者产生“共情”。书法的这一审美
本文主要针对具有周期性变化图案的纺织品,研究对其瑕疵部分进行检测的算法。在传统图像处理领域,针对纺织品图像由于在拍摄生成的过程中存在的拉伸和旋转形变,提出一种图像校正方法,将不同程度变化的不规则图案校正为符合图像本身周期规律的整齐图案。在深度学习领域,在传统自编码器的基础上加入SSIM损失函数和高斯噪声项,以提高对图像的重构能力,用于将有瑕疵的图像重构为无瑕疵图像,以实现对瑕疵部分的识别。利用深度
图像融合是一种图像增强技术,通过将不同类型的传感器获得的图像组合起来,从而生成具有丰富信息和鲁棒性良好的融合图像,以便后续的图像处理。图像融合技术广泛使用在军事、遥感、安全监控和医学图像等领域。融合方法设计的关键是高效的图像信息抽取和合适的融合规则,并且要避免人工因素对融合结果的影响。传统的图像融合算法基于手工设计融合规则,算法复杂且运行速度慢,泛化能力及鲁棒性较差。随着深度学习在图像融合上的应用
获取大型的带注释数据集是非常昂贵的,需要从现有标签的数据集到未标记的数据的转移过程。然而,特定应用程序相关的数据通常与公开可用的数据集不同,因为这些特定的数据是来自不同的领域。虽然域自适应在利用源领域的标记数据来学习未标记目标领域的精确分类器方面已经取得了巨大的成功,但是这些域自适应算法都是在源域与目标域具有相同类别,利用标签丰富的源域信息对标签稀少且分布相似的目标域数据进行迁移学习。然而,由于现
随着中国传统文化逐渐走向世界,在数字化平台传播、宣传、弘扬中国非物质文化遗产也成为了学界和产业界共同努力的目标。因此,以中国传统文化、传统艺术、非遗文化为主题的应用程序层出不穷。而江苏宜兴的传统紫砂文化在数字化平台上一直处于发展的初期,其界面以图文介绍和商品交易为主要功能,界面的视觉设计也显得相对简单。在以文化传播为主要功能的应用程序案例的借鉴下,在图形化界面和动画交互界面的发展现状下,论文试图通
专利文本记录了大量的科技成果信息,受到了人们的高度关注。随着互联网的快速发展,专利文本数量不断增多,如何从纷繁冗杂的专利文本中高效地抽取其中关键特征一直都是自然语言处理的基础研究问题。然而,现有的面向专利文本的特征抽取还未取得十分令人满意的效果,对专利文本特征抽取的准确度需进一步提高。针对以上问题,论文提出一种无监督的融入公共知识的TextRank专利关键词提取模型,该模型有效地利用了先验公共知识
随着我国汽车制造和智能交通领域的发展,汽车智能化水平逐年提升。在汽车价格平民化与道路条件标准化的背景下,汽车已成为人们工作和生活中的重要工具。然而,汽车的大量使用也产生了一系列的负面影响和安全隐患,例如上下班高峰严重的交通堵塞,频发的交通事故等。如何通过安全辅助驾驶系统预防和减少交通事故的发生成为了学界日益关注的核心焦点。其中,基于双目视觉的障碍距离检测和车道线检测是该领域的热点问题,本文设计开发
伴随着科技的进步与计算机视觉技术的飞速发展,基于深度学习的目标检测技术得到了越来越广泛的应用,在各个领域都展现出蓬勃生机。与此同时,也出现了越来越多样化的数据形式,这给目标检测任务带来了难点。可见光单模态数据在部分特殊情况下提供的信息不够充足,基于可见光单模态图像的目标检测任务可能会出现准确率下降的问题,然而越来越多样化的数据形式给这个问题带来了转机。使得可以通过对不同模态的图像数据进行融合的方式