论文部分内容阅读
对于潜艇等水下航行体,无论是艇体还是推进器和冷却水排放等对背景流体的扰动作用,其力学效应都相当于有动量传递给周围流体。水下航行体的艇体效应相当于给背景流体传递一个阻力动量,而推进器和冷却水排放效应则相当于给背景流体传递一个射流动量,因此水下航行体尾迹的力学效应可以等效为某种水下动量源。水下动量源所形成的动量尾迹,在海洋背景流体的作用下,有可能会演化出大尺度的涡结构,并在水面上产生可被合成孔径雷达SAR识别的特殊流动结构。因此,本论文的研究对潜艇SAR非声遥感探测有重要学术意义与潜在军事应用价值。在回顾和总结了关于本领域国内外研究现状的基础上,本博士论文采用实验、理论和数值相结合的方法,针对水下动量源在密度均匀和分层流体中大尺度涡结构的形成机理及其表现特征等问题进行了研究,具体内容如下。在第二章中,采用层流圆管潜射流方法,结合Stokes近似理论和相关的经验模型,在多种射流时间和雷诺数组合下,实验和理论研究了该射流动量在密度均匀粘性流体中的演化机理及其表现特征,定量分析了蘑菇型涡结构的无量纲射流长度L*、涡环半径R*及其包络外形长度d*等几何特征参数随无量纲时间t*的变化规律。系列实验结果表明,蘑菇型涡的形成与演化过程可分为三个不同的阶段,分别为启动、发展和衰退阶段。在启动阶段,L*和d*随t*线性变化,而R*则近似为一个常数。在发展阶段,蘑菇型涡的演化具有自相似性,在各种射流时间和雷诺数组合下,L*、R*和d*与t*1/2均为同一正比关系。在衰退阶段,蘑菇型涡会发生两类形式的衰退演化,第一类衰退出现在射流结束之后,其间L*和R*与t*1/5相关,而d*近似为一个常数;第二类衰退出现在射流结束之前,当射流动量达到某个临界值后,蘑菇型涡结构就会发生破碎等现象。在第三章中,基于不可压Navier-Stokes方程,采用计算流体力学方法,数值模拟与分析了层流圆管潜射流在密度均匀粘性流体中的演化机理及其表现特征,结合Stokes近似理论和相关的经验模型,定量研究了蘑菇型涡结构的无量纲几何参数L*、R*和d*等随无量纲时间t*的变化规律,数值模拟结果与相关理论和实验结果吻合。此外,还对蘑菇型涡结构的二次回流点、动量源作用中心及其几何中心的速度变化规律、垂向涡量分布特征以及涡量-流函数关系等进行了研究与分析。第四章中,采用圆管潜射流方法,在多种射流无量纲潜深d/H、雷诺数Re以及限制数C的组合下,实验研究了该潜射流动量在密度均匀粘性流体中的演化机理及其表现特征,其中d为射流潜深,H为水深。研究表明,当C<1时射流表现为深水特征,而当1≤C<2时射流表现为过度特征,在这两种情况下均不产生任何形式的大尺度相干结构;当2≤C<10时射流表现为浅水特征,C≥10时射流表现为极浅水特征,在这两种情况下均产生大尺度的偶极子涡结构。对极浅水特征射流,在各种无量纲潜深下,偶极子涡结构的无量纲形成时间tf*与无量纲射流时间Tinj*均满足相同的正比例关系;对浅水特征潜射流,当无量纲深为0.5时,tf*与Tinj*满足某种线性关系,但对其无量纲潜深d/H,tf*与Tinj*之间无明显规律。在第五章中,采用水平移动射流方法模拟水下移动动量源,实验研究了其在密度分层流体中生成准二维偶极子涡街的机理,分析了偶极子涡街的演化特性。在系列实验基础上,获得了移动射流动量源在密度分层流体中能够演化为偶极子涡街的(Re, Fr)组合条件,其中Re为射流Reynolds数,Fr为射流Froude数。进而,对不同的Re取值,获得了偶极子涡街无量纲形成时间及其无量纲涡街平均波长倒数与Fr之间的相关关系,结果表明它们都是不依赖于Re数的,而且与Fr近似为幂指数关系。在第六章中,采用带L型尾喷管拖曳球方法模拟水下运载器艇体与冷却水排放等产生的阻力与射流动量尾迹,实验研究了这种组合式移动动量尾迹在密度分层流体中的演化特性。研究表明,当JD/J>CD时,这种组合式移动动量尾迹的演化特性主要受拖曳球体阻力动量尾迹演化的影响,形成正卡门型准二维涡街结构,其中JD为拖曳球产生的阻力动量流量,J是L型尾喷管产生的射流动量流量, CD是球的阻力系数;当JD/J<CD时,这种组合式移动动量尾迹的演化特性与(Rej, Frj)的组合条件密切相关,主要受射流动量尾迹演化的影响,在(Rej, Frj)的某些组合下可能会形成反卡门型准二维涡街结构,但也可能不产生任何形式的大尺度相干结构,其中Rej和Frj分别为射流Reynolds与Froude数。在系列实验基础上,获得了这种组合式移动动量尾迹在密度分层流体中能够演化为反卡门型准二维涡街结构的(Rej, Frj)组合条件,并对不同的Rej取值,获得了准二维涡街无量纲形成时间及其量纲次涡街平均波长倒数与Frj之间的相关关系,结果表明它们都是不依赖于Rej的,而且与Frj近似为幂指数关系。