论文部分内容阅读
                            
                            
                                非甾体抗炎药(Nonsteroidal anti-inflammatory drugs,NSAIDs)经常作为处方药或非处方药使用于疼痛、发热及关节炎症的治疗。由于NSAIDs的广泛使用,与NSAIDs相关的药物诱导性肝损伤(Drug induced liver injury, DILI)越来越受到关注。双氯芬酸(Diclofenac,DCF)是一种临床上广泛使用的苯乙酸类非甾体抗炎药,也是报道较多的会引起特异质药物性肝损伤的典型药物之一,严重时甚至会导致急性肝衰竭和死亡。目前,除了苯醌亚胺一蛋白加合途径和致线粒体功能紊乱等直接毒性外,免疫毒性也被认为是DCF诱导DILI的另一个主要因素。此外,由于DCF在人体内的代谢途径相对丰富,可以被进一步转化为多种具有潜在肝毒性及免疫原性的反应活性代谢产物,DCF介导的DILI可能是由于多种反应活性代谢物共同作用的结果。因此,了解DCF在生物体内的转化及代谢物的肝毒性机制,有利于指导临床合理用药及规避DILI风险。然而,DCF及其反应活性代谢产物诱导的肝毒性机制以及与免疫系统的相关性仍有待进一步研究。
本课题采用人拟化TgCYP3A4/hPXR小鼠模拟DCF在人体中的代谢过程,对DCF及其反应活性代谢物的急性肝毒性进行评价,从药物直接毒性、代谢动力学、肝脏转录组学以及体内外免疫活化等角度对DCF及其反应活性代谢物介导的DILI机制进行探索,具体研究内容及结果如下:
1)考虑到DCF代谢途径广泛,除非抑制其他所有代谢途径,否则无法评估DCF原型药物或其某一特定代谢产物在体内与DILI的直接关系。基于此,本研究将DCF及其反应活性代谢物4’-羟基双氯芬酸(4’-OH-DCF)、5-羟基-双氯芬酸(5-OH-DCF)以及双氯芬酸酰基葡萄糖醛酸(DCF-G)以腹腔注射的方式分别直接给予TgCYP3A4/hPXR小鼠,并通过血清生化检测及肝脏组织病理检查评估各DCF反应活性代谢物和急性肝损伤的相关性。结果显示,DCF及其反应活性代谢物均可以引起TgCYP3A4/hPXR小鼠发生不同程度的急性肝毒性,主要表现为血清ALT水平显著增加以及肝细胞水肿变性。其中,DCF-G在这三种反应活性代谢物中对肝脏的损伤最为显著。
2)为了探究DCF在体内潜在的直接肝毒性机制,本研究利用LC-MS/MS方法评估DCF诱导的急性肝损伤小鼠中肝脏谷胱甘肽(Glutathione.GSH)含量变化,结果发现DCF不是通过GSH耗竭对肝脏细胞产生直接毒性,说明在体内可能存在其他的毒性机制间接参与DCF急性肝损伤的发生。
3)为了进一步探讨DCF急性肝损伤敏感性和DCF及其反应活性代谢物代谢分布的相关性,本研究首先建立了一种高选择性的、准确并可靠的DCF及其代谢物LC-MS/MS检测方法。通过LC-MS/MS技术和血清ALT活性检测分别比较TgCYP3A4/hPXR小鼠和野生型BALB/c小鼠中DCF的代谢分布和对DCF致急性肝损伤的敏感性。结果发现相对于野生型BALB/c小鼠,TgCYP3A4/hPXR小鼠对于DCF诱导的急性肝损伤更敏感,且DCF反应活性代谢物在敏感小鼠肝脏中更加富集。这些不仅证实了TgCYP3A4/hPXR小鼠可以作为进一步研究DCF介导DILI机制的理想模型,也表明了DCF反应活性代谢物在肝脏中的富集程度可能直接影响DILI的敏感性。另外,本研究基于上述通过DCF及其代谢物直接给药建立的急性肝毒性TgCYP3A4/hPXR小鼠模型,对DCF、4’-OH-DCF、5-OH-DCF以及DCF-G直接进入体内后在全血和肝脏中的转化及暴露水平进行了评估。结果显示,DCF-G直接给予小鼠后可以在体内转变为原型药及其他反应活性代谢物,提示DCF-G在体内可能会引起再次伤害;另外,DCF-G在DCF和DCF-G直接给药所诱导的急性毒性肝脏中表现出明显的富集。这些进一步表明DCF诱导的急性肝毒性和DCF-G在肝脏中的富集有关。
4)为了进一步探究药物性急性肝损伤机制以及和免疫系统的关联,本研究利用肝脏转录组高通量测序(RNA-seq)技术进一步评估DCF及其反应活性代谢物在急性肝损伤条件下对肝脏转录组的影响,并采用Real-timeqPCR技术对RNA-seq结果进行验证。结果显示,DCF及其反应活性代谢物均可不同程度地影响肝脏基因组转录,其中DCF-G的影响最为显著。DCF-G可以诱导大量“免疫系统”和“细胞死亡”相关基因的表达,包括Cxcll、Ccl2、C3arl、C5arl、Tnfaip3、Fga、Fgb、Fgg以及Serpinel等,而这些基因主要与“TNF信号通路”、“IL-17信号通路”以及“补体和凝血级联途径”等生物学通路有关。DCF-G可通过诱导这些基因及其生物学通路促进肝脏局部炎症反应,促使肝细胞对TNF-α介导细胞凋亡的敏感性增加,以及导致凝血功能障碍等,从而在急性肝损伤进程中起着关键作用。此外,4’-OH-DCF也可以诱导部分“免疫系统”和“细胞死亡”相关基因表达,表现出和“TNF信号通路”以及“IL-17信号通路”一定的相关性。然而,急性肝毒性较弱的5-OH-DCF对这些基因的影响较少。这些结果表明肝脏免疫系统的活化和DCF及其反应活性代谢产物诱导的急性肝毒性有关,特别是DCF-G。
5)本研究进一步评估了DCF及其代谢物在体内外对免疫细胞及因子的活化作用。本研究通过利用小鼠单核巨噬细胞J774A.I和小鼠肝癌细胞系Hepalclc7细胞建立了共培养模型,在体外进一步评估DCF及其反应活性代谢物的炎性刺激作用和细胞毒性。体外细胞实验表明DCF在J774A.1细胞和Hepalclc7细胞的共培养体系中表现出了一定的“协同”细胞毒性。但是,DCF活性代谢物在体外共培养体系中并没有表现出一致的协同毒性,并且DCF及DCF-G不会直接刺激小鼠单核巨噬细胞J774A.1的炎症反应。这些提示了巨噬细胞在DCF诱导的DILI可能起着部分的作用,而DCF反应活性代谢物产生的急性肝毒性可能是更多因素作用的结果,在体内存在其他的毒性机制介导DILI的发生。另一方面,本研究利用多重细胞因子检测技术对急性肝毒性小鼠血清中免疫相关细胞因子进行了分析,结果表明DCF及其反应活性代谢物可以诱导血清免疫相关因子水平不同程度的增加,其中DCF-G和4’-OH-DCF在急性肝毒性发生早期可以显著诱导IL-12、IL-17和TNF-α血清水平的上调,这些在一定程度上印证了肝脏转录组的结果。
本课题通过探索DCF反应活性代谢物致肝毒性机制,包括与免疫系统的相关性,确定了DCF-G是DCF急性肝损伤的主要贡献者,而这和DCF-G在肝脏中的富集以及对肝脏免疫系统的过度活化相关,主要涉及“TNF信号通路”、“IL-17信号通路”以及“补体和凝血级联途径”等生物学通路。通过确定的代谢产物及免疫活化途径,也可为此类药物肝毒性,尤其是急性肝毒性,提供预测和规避的方向及潜在的干预靶点。这些发现有助于进一步阐明DILI的作用机制,同时为创新药物开发及临床安全性评价提供参考依据。
                        本课题采用人拟化TgCYP3A4/hPXR小鼠模拟DCF在人体中的代谢过程,对DCF及其反应活性代谢物的急性肝毒性进行评价,从药物直接毒性、代谢动力学、肝脏转录组学以及体内外免疫活化等角度对DCF及其反应活性代谢物介导的DILI机制进行探索,具体研究内容及结果如下:
1)考虑到DCF代谢途径广泛,除非抑制其他所有代谢途径,否则无法评估DCF原型药物或其某一特定代谢产物在体内与DILI的直接关系。基于此,本研究将DCF及其反应活性代谢物4’-羟基双氯芬酸(4’-OH-DCF)、5-羟基-双氯芬酸(5-OH-DCF)以及双氯芬酸酰基葡萄糖醛酸(DCF-G)以腹腔注射的方式分别直接给予TgCYP3A4/hPXR小鼠,并通过血清生化检测及肝脏组织病理检查评估各DCF反应活性代谢物和急性肝损伤的相关性。结果显示,DCF及其反应活性代谢物均可以引起TgCYP3A4/hPXR小鼠发生不同程度的急性肝毒性,主要表现为血清ALT水平显著增加以及肝细胞水肿变性。其中,DCF-G在这三种反应活性代谢物中对肝脏的损伤最为显著。
2)为了探究DCF在体内潜在的直接肝毒性机制,本研究利用LC-MS/MS方法评估DCF诱导的急性肝损伤小鼠中肝脏谷胱甘肽(Glutathione.GSH)含量变化,结果发现DCF不是通过GSH耗竭对肝脏细胞产生直接毒性,说明在体内可能存在其他的毒性机制间接参与DCF急性肝损伤的发生。
3)为了进一步探讨DCF急性肝损伤敏感性和DCF及其反应活性代谢物代谢分布的相关性,本研究首先建立了一种高选择性的、准确并可靠的DCF及其代谢物LC-MS/MS检测方法。通过LC-MS/MS技术和血清ALT活性检测分别比较TgCYP3A4/hPXR小鼠和野生型BALB/c小鼠中DCF的代谢分布和对DCF致急性肝损伤的敏感性。结果发现相对于野生型BALB/c小鼠,TgCYP3A4/hPXR小鼠对于DCF诱导的急性肝损伤更敏感,且DCF反应活性代谢物在敏感小鼠肝脏中更加富集。这些不仅证实了TgCYP3A4/hPXR小鼠可以作为进一步研究DCF介导DILI机制的理想模型,也表明了DCF反应活性代谢物在肝脏中的富集程度可能直接影响DILI的敏感性。另外,本研究基于上述通过DCF及其代谢物直接给药建立的急性肝毒性TgCYP3A4/hPXR小鼠模型,对DCF、4’-OH-DCF、5-OH-DCF以及DCF-G直接进入体内后在全血和肝脏中的转化及暴露水平进行了评估。结果显示,DCF-G直接给予小鼠后可以在体内转变为原型药及其他反应活性代谢物,提示DCF-G在体内可能会引起再次伤害;另外,DCF-G在DCF和DCF-G直接给药所诱导的急性毒性肝脏中表现出明显的富集。这些进一步表明DCF诱导的急性肝毒性和DCF-G在肝脏中的富集有关。
4)为了进一步探究药物性急性肝损伤机制以及和免疫系统的关联,本研究利用肝脏转录组高通量测序(RNA-seq)技术进一步评估DCF及其反应活性代谢物在急性肝损伤条件下对肝脏转录组的影响,并采用Real-timeqPCR技术对RNA-seq结果进行验证。结果显示,DCF及其反应活性代谢物均可不同程度地影响肝脏基因组转录,其中DCF-G的影响最为显著。DCF-G可以诱导大量“免疫系统”和“细胞死亡”相关基因的表达,包括Cxcll、Ccl2、C3arl、C5arl、Tnfaip3、Fga、Fgb、Fgg以及Serpinel等,而这些基因主要与“TNF信号通路”、“IL-17信号通路”以及“补体和凝血级联途径”等生物学通路有关。DCF-G可通过诱导这些基因及其生物学通路促进肝脏局部炎症反应,促使肝细胞对TNF-α介导细胞凋亡的敏感性增加,以及导致凝血功能障碍等,从而在急性肝损伤进程中起着关键作用。此外,4’-OH-DCF也可以诱导部分“免疫系统”和“细胞死亡”相关基因表达,表现出和“TNF信号通路”以及“IL-17信号通路”一定的相关性。然而,急性肝毒性较弱的5-OH-DCF对这些基因的影响较少。这些结果表明肝脏免疫系统的活化和DCF及其反应活性代谢产物诱导的急性肝毒性有关,特别是DCF-G。
5)本研究进一步评估了DCF及其代谢物在体内外对免疫细胞及因子的活化作用。本研究通过利用小鼠单核巨噬细胞J774A.I和小鼠肝癌细胞系Hepalclc7细胞建立了共培养模型,在体外进一步评估DCF及其反应活性代谢物的炎性刺激作用和细胞毒性。体外细胞实验表明DCF在J774A.1细胞和Hepalclc7细胞的共培养体系中表现出了一定的“协同”细胞毒性。但是,DCF活性代谢物在体外共培养体系中并没有表现出一致的协同毒性,并且DCF及DCF-G不会直接刺激小鼠单核巨噬细胞J774A.1的炎症反应。这些提示了巨噬细胞在DCF诱导的DILI可能起着部分的作用,而DCF反应活性代谢物产生的急性肝毒性可能是更多因素作用的结果,在体内存在其他的毒性机制介导DILI的发生。另一方面,本研究利用多重细胞因子检测技术对急性肝毒性小鼠血清中免疫相关细胞因子进行了分析,结果表明DCF及其反应活性代谢物可以诱导血清免疫相关因子水平不同程度的增加,其中DCF-G和4’-OH-DCF在急性肝毒性发生早期可以显著诱导IL-12、IL-17和TNF-α血清水平的上调,这些在一定程度上印证了肝脏转录组的结果。
本课题通过探索DCF反应活性代谢物致肝毒性机制,包括与免疫系统的相关性,确定了DCF-G是DCF急性肝损伤的主要贡献者,而这和DCF-G在肝脏中的富集以及对肝脏免疫系统的过度活化相关,主要涉及“TNF信号通路”、“IL-17信号通路”以及“补体和凝血级联途径”等生物学通路。通过确定的代谢产物及免疫活化途径,也可为此类药物肝毒性,尤其是急性肝毒性,提供预测和规避的方向及潜在的干预靶点。这些发现有助于进一步阐明DILI的作用机制,同时为创新药物开发及临床安全性评价提供参考依据。