论文部分内容阅读
以甲醇和二氧化碳为原料合成碳酸二甲酯是一条极具吸引力的工艺路线,同时解决了二氧化碳的去向和甲醇产能过剩的问题。具有Ia3d立方结构的MCM-48因具有三维网状结构和良好的扩散性能在催化领域具有较大的应用潜质,但本身缺乏活性中心,限制了其应用。本文将该反应体系和材料的优势结合起来,将铜镍金属掺杂到MCM-48介孔分子筛中作为催化甲醇和二氧化碳直接合成碳酸二甲酯的催化剂。 因氟离子具有提高分子筛水热稳定性的特点,本文在含氟体系、较低的模板剂浓度下合成介孔分子筛MCM-48,研究了模板剂用量、水量、晶化温度等对分子筛结构的影响,并通过X射线衍射、电子扫描电镜、透射电镜、N2等温吸附等方法对样品进行表征分析来确定合成分子筛的最优制备条件,结果表明,当模板剂用量、水量、晶化温度分别为n(Si)∶n(十六烷基三甲基溴化铵,简写为CTAB)=1∶0.2、n(Si)∶n(H2O)=1∶70、150℃时合成出的分子筛结构和形貌最好。 在最优的分子筛合成条件下,分别通过水热直接合成法和传统浸渍法将金属铜或镍引入分子筛,考察了金属掺杂量、单双金属掺杂、双金属掺杂时金属摩尔比等对分子筛结构的影响,并通过X射线衍射、红外光谱、电感耦合等离子发射光谱、N2等温吸附等方法对样品进行表征分析,结果表明,在一定的金属掺杂范围内都可以成功制备出维持有三维有序性结构的分子筛。水热合成时,单金属铜镍的最大掺杂量分别可以达到n(Si)∶n(Cu)=1∶0.025、n(Si)∶n(Ni)=1∶0.030,铜镍双金属的最大掺杂量可达n(Si)∶n(Cu)∶n(Ni)=1∶0.02∶0.01;浸渍合成时,氧化铜和氧化镍的质量分数最大可达15%。 采用Cahn-2000型高真空电子天平测试系统来研究水热合成的样品对二氧化碳的吸附量,结果表明,当单金属掺杂时,样品对二氧化碳的吸附量随金属含量的增多呈先增大后减小的趋势,金属掺杂量分别为n(Si)∶n(Cu)=0.015、n(Si)∶n(Ni)=0.015时样品对二氧化碳的吸附量最大;当固定铜镍摩尔比为2的双金属掺杂时,样品对二氧化碳的吸附量随金属含量的增多而减小;当金属总量相同、不同金属摩尔比时,样品对二氧化碳吸附量的变化趋势为:Vab(铜镍摩尔比为2时的双金属掺杂)>Vab(铜单金属掺杂)>Vab(镍单金属掺杂)>Vab(铜镍摩尔比为0.5和1时的双金属掺杂)。 反应条件为150℃、7.5 bar CO2、10 mL甲醇、9h时对样品的催化性能进行考察,结果表明,水热合成的样品Cu-Ni-MCM-48-0.010-0.005的催化性能最好;在最优催化剂催化反应时优化反应条件,在考察范围内,反应最佳温度为160℃,反应最佳压力为10 bar。