【摘 要】
:
本文主要针对亚声速空气流作用下1064nm连续激光烧蚀玻璃纤维增强树脂基复合材料(GFRP)过程中的力学剥蚀效应,从实验和数值模拟两个方面进行了研究。设计实验装置收集了激光烧蚀GFRP过程中的力学剥蚀产物。通过测量复合材料总的质量损失和剥蚀产物质量,计算力学剥蚀引起的材料烧蚀所占的百分比。研究了不同的激光功率密度和切向气流速度下力学剥蚀效应的变化规律,使用红外测温仪测量光斑中心点的温度变化。实验结
论文部分内容阅读
本文主要针对亚声速空气流作用下1064nm连续激光烧蚀玻璃纤维增强树脂基复合材料(GFRP)过程中的力学剥蚀效应,从实验和数值模拟两个方面进行了研究。设计实验装置收集了激光烧蚀GFRP过程中的力学剥蚀产物。通过测量复合材料总的质量损失和剥蚀产物质量,计算力学剥蚀引起的材料烧蚀所占的百分比。研究了不同的激光功率密度和切向气流速度下力学剥蚀效应的变化规律,使用红外测温仪测量光斑中心点的温度变化。实验结果表明:力学剥蚀造成的靶材质量损失所占百分比会随气流速度的增大而增大并趋于饱和;力学剥蚀所占百分比随着激光功率密度的增大而增大;力学剥蚀所占百分比随激光辐照时间的增加而增大并达到相对恒定;GFRP的力学剥蚀效应与其铺层结构相关,GFRP内部铺层结构会影响材料表面的力学剥蚀机理,造成材料表面温度的规律性变化。建立了激光烧蚀GFRP的二维轴对称模型,模型中考虑了GFRP对激光的体吸收效应、树脂的热解、玻璃纤维的熔融和气化、GFRP的力学剥蚀等机理以及材料内部的传热传质过程。通过COMSOL软件进行有限元分析,实现多物理场的耦合。计算得到了复合材料烧蚀的温度场、烧蚀形貌等结果。数值计算结果与实验结果进行比较,两者符合的比较好。本文的研究结果有助于进一步了解连续激光烧蚀GFRP过程中的力学剥蚀效应。对了解高速气流下激光辐照GFRP的损伤破坏机制具有重要意义。
其他文献
弹药爆炸过程中的电参数研究目前逐渐引起了广泛关注,而爆生等离子密度是表征电参数的重要指标之一,因此,等离子体密度参数的测试问题成为了亟需解决的问题之一;本文建立在等离子体微波瑞利散射原理的基础上,利用理论分析,试验验证等手段对微波瑞利散射法测试爆炸等离子体密度进行了研究:本文首先对研究的意义和背景进行了分析,并对常见的等离子体测试方法进行了比较分析,得到了不同的测试方法的应用范围,分析了各种方法在
研究水在碳纳米管内的输运对生物纳米技术的应用具有重要价值,同时也对纳米流体的潜在应用具有重要意义。本文通过分子动力学模拟表明,通过调节压差方向,可以显著提高单列水分子在碳纳米管中的跨膜流量,即在纵向压差的基础上施加一个横向压力。有趣的是,随着横向压力的变化,水流量呈现出一个极大值行为,这可以用碳纳米管内部单列水链的断裂来解释。随着横向压力的增大,单个水分子成功通过碳纳米管的平均时间呈单调递减趋势,
热电材料因为能够实现热能到电能的直接转换,而被认为是缓解能源危机的有效策略。Ⅳ-Ⅵ二元硫族化合物由于具有较高的热电性能吸引了越来越多的科学家关注。但该类化合物大多数有毒或者原料昂贵,不适合大规模推广应用。因此本文围绕具有无毒、环境友好、原料来源丰富及成本低的SnSe和SnTe展开了一系列的热电性能调控优化研究,制备出了一系列的Pb和S共掺的多晶SnSe,In和Pb双掺杂的SnTe以及Sn过量自补偿
作为近几年来半导体领域最具竞争力的材料之一,卤化物钙钛矿受到了广泛的关注。其中,钙钛矿量子点(Quantum dots,QDs)材料由于发光可调、色域宽、色纯度高以及溶液可加工等优点,成为光电器件领域的热点材料。然而,钙钛矿QD的大比表面积以及弱离子键合等特性,使得QD内部和表面容易形成缺陷,不利于高效率发光器件的构筑。其中,红光CsPbI3 QD由于非发光相(黄相)的较低形成能,导致发光相(黑相
金属材料在严重塑性变形下往往发生显著的晶粒细化,当晶粒细化至亚微米或纳米级别后,其强度可以得到大幅度提高,因此纳米结构金属材料由于其独特的结构和性能关系,成为材料科学研究的热点。通过塑性变形技术,在金属材料中可诱导产生高密度缺陷和界面,并且对金属材料的晶粒细化作用产生显著影响。镍基合金被广泛应用于诸如航空航天发动机在内的众多重要领域,如何优化其结构进而提升其性能逐渐成为研究的热点。而诸多镍基合金中
论文以城市轨道交通断面客流短时预测为题,基于轨道交通运营客流数据,估算历史断面客流数据,并对历史断面客流数据进行关联性分析,为短时预测提供基础,基于LSTM神经网络构建了断面客流短时预测模型,利用计算机实现断面短时客流的快速预测,预测结果能够为城市轨道交通运营资源配置和调度、运营计划制定和调整提供指导或参考。论文主要的研究成果为:从城市轨道交通开通之初、线路发展、新线扩建和网络形成方面分析了轨道交
纳米铝热剂由于其高能量密度,短的点火延迟时间和自持的放热反应而受到广泛关注。本学位论文拟研究球形纳米Ni O的制备,探究空心球氧化镍的球体粒径及壳层数的控制方法,并研究其组成的Al/Ni O纳米铝热剂的性能,探究结构对纳米铝热剂的放热量、燃烧火焰速度、燃烧产生的压力等燃烧性能的影响。具体内容如下:首先,采用油浴法制备实心球Ni O,超声混合法制备Al/Ni O,表征其形貌和结构,并利用热分析、点火
城市轨道交通列车轮对是保证列车平稳安全运行的重要部件,而轮对磨耗会在轮对运行过程中持续发生,若轮对磨耗不断加剧则可能影响列车的正常运营。因此,实时掌握轮对磨耗情况,并及时对失效轮对进行镟修处理,对保障列车运行的稳定性和安全性具有重要意义。此外,不合理的镟修方式会提前轮对退役时刻点,增加轮对使用成本。本文从轮对磨耗模型及镟修优化策略两方面展开研究。结合轮轨接触关系分析影响接触作用的主要轮/轨参数,并
六硝基六氮杂异伍兹烷(CL-20),季戊四醇四硝酸酯(PETN),环四亚甲基四硝胺(HMX),此类高能敏感炸药具有优异的爆轰性能,广泛地应用于武器战斗部中,但由于CL-20、PETN、HMX的机械感度较高,不易于生产,运输,存储,并且容易因为外界作用力的影响而引发燃烧或者爆炸,导致比较重大的事故和人员伤亡。因此对含能材料进行降感处理,提高它的安全性能就显得尤为重要。TATB是一种兼具优异安定性和钝
本文采用感应熔炼工艺制备了富铜FeCoNiCux高熵合金,对比选取具有最优性能的FeCoNiCu2.0高熵合金作为基体,制备了原位TiC、Ti B2颗粒增强富铜FeCoNiCu2.0高熵合金。并在基体FeCoNiCu2.0的基础上加入了合金元素V、Nb,研究其组织形貌和力学性能。此外,本文对TiC/FeCoNiCu2.0复合材料进行了摩擦磨损性能研究。显微组织分析表明,FeCoNiCux高熵合金的