论文部分内容阅读
香蕉属于典型的“嗜钾”作物,生育期需要大量的钾肥。然而,我国华南香蕉产区部分蕉园土壤有效钾含量偏低以及不合理追施钾肥等问题现状的存在,加剧香蕉缺钾胁迫的危害程度。为阐明香蕉应答缺钾胁迫的生理和分子机制,本研究以香蕉主栽品种“巴西蕉”(Musa acuminate L.AAA ground,cv.Brazilian)为实验材料,采用幼苗盆栽试验,设置3个钾浓度水平:K0(0.00mmol/L)、K1(0.03 mmol/L)、K2(3.00 mmol/L)对香蕉幼苗进行钾胁迫处理,在香蕉幼苗0 d-35d生长期间,研究其生长形态、生理养分变化对缺钾胁迫的响应;在此基础上,联合转录组、蛋白质组和磷酸化蛋白组学技术深入挖掘缺钾胁迫下根系响应的关键基因及代谢途径,并通过K+缺陷型酵母互补实验对获得的关键基因进行功能验证,主要结果如下:1.随着香蕉幼苗的生长,K0、K1缺钾胁迫处理对幼苗根系生长、发育和根系活力产生了抑制的影响,35 d较30 d时,香蕉幼苗的地上生物量下降了2.9%-3.2%;当生长至35 d时,K0、K1较K2处理根系活力分别降低了51.6%和33.9%;同时,K0处理明显引起香蕉幼苗叶片黄化、枯萎。进一步从根系组织结构上观察到K0处理已致使根系细胞膜不清晰,细胞壁之间产生一定的空隙,并形成较大的胞间隙,不利于养分离子的迁移。由此可见,缺钾处理影响了香蕉幼苗的形态和根系生长,钾浓度越低,缺钾危害症状越明显。2.缺钾胁迫(K0、K1)时,香蕉幼苗叶片及根系电导率和MDA含量呈增加趋势,当生长至35 d时,K0较K2处理的叶片及根系电导率分别高0.7%和3.5%,叶片和根系中的MDA含量分别高6.5%和18.0%,可以推断缺钾胁迫已导致香蕉幼苗细胞膜脂质过氧化,细胞膜受到了一定程度的损伤,而且根系较叶片受到的伤害快且严重;缺钾胁迫后,叶片与根系抗氧化酶(SOD、POD、CAT)酶活性变化趋势一致。前期香蕉幼苗抗氧化酶(SOD、POD、CAT)活性变化幅度不明显,但到后期时,POD、CAT酶活性显著降低,说明香蕉在开始遭受缺钾胁迫时,体内启动了适应性机制消除ROS,但是随着缺钾胁迫加剧以及植株抵御逆境能力的减弱,后期香蕉幼苗生理机能趋于紊乱。此外,缺钾胁迫促进NK素积累,但抑制P素积累,造成香蕉幼苗植株体N、P、K养分比例失衡。3.对K0、K1、K2处理30 d时香蕉幼苗根系进行转录组测序分析,结果获得3350个DEGs,主要富集于类黄酮生物合成、亚麻酸代谢、不饱和脂肪酸生物合成、半乳糖代谢、甘油酯代谢和鞘脂类代谢等14条途径;获得了在缺钾胁迫响应起关键作用的多个基因,如NRT1.1、HKT2、IAA16、A-2b、78A4、pectinesterase2等,其中NO3-转运基因NRT1.1表达量显著下调,推测香蕉根系处于缺钾胁迫时,通过影响NO3-的吸收转运调节细胞质NPK平衡。对离子转运、转录因子、细胞壁等相关关键DEGs分析发现K0和K1较K2处理差异显著而K0与K1间差异不显著,所以后续缺钾胁迫蛋白质组、磷酸化蛋白组分析只选择K0处理。4.通过对K0和K2处理30 d的香蕉幼苗根系进行蛋白组学分析鉴定到缺钾胁迫香蕉根系差异表达蛋白457个,其中上调表达蛋白240个,下调表达蛋白217个;而谷胱甘肽代谢途径相关的蛋白显著富集,说明缺钾可能刺激香蕉根系产生了ROS信号,并激活了抗氧化防御系统,从而清除过多的ROS,暂时减缓了缺钾胁迫对香蕉根系的危害,也抑制了细胞生长相关蛋白的表达。5.通过磷酸化蛋白学鉴定到缺钾胁迫香蕉根系263个差异磷酸化修饰位点,分别位于215个抗逆蛋白上,包括PP2C、谷胱甘肽转移酶、丙酮酸脱氢酶、丙酮酸激酶、乙酰辅酶A合成酶等差异磷酸化蛋白。其中4个含有谷胱甘肽转移酶保守结构域的蛋白发生了丝氨酸位点的磷酸化修饰,而且磷酸化水平均显著上调表达,说明谷胱甘肽转移酶的磷酸化修饰在香蕉对缺钾胁迫防御中的重要性。6.利用多组学关联分析,发现了缺钾胁迫响应的2个关键基因(MaQORH和MazntA)。克隆获得了这两个基因的cDNA全长序列,序列分析显示这两个基因长度分别为1002 bp和2295 bp,分别编码333个和764个氨基酸。K+缺陷型酵母互补实验,结果显示,MaQORH和MazntA基因均能够恢复K+缺陷型酵母在低钾培养基上生长。综上所述,缺钾胁迫不仅会影响香蕉幼苗的地上形态和根系生长,而且会造成香蕉幼苗植株体N、P、K养分比例失衡。同时,多组学分析发现有多个基因和蛋白的差异表达及蛋白的磷酸化修饰参与了香蕉根系缺钾胁迫的响应,其中2个钾胁迫响应关键基因的转运钾离子功能得到验证,本研究为耐低钾型香蕉新品种培育提供了基因资源和科学依据。