【摘 要】
:
如今不同科学技术发展迅速,在当前时代背景下医疗影像技术也有了飞速的进展,医疗影像在临床诊疗、教研科学等方面具有重要的作用,分析解读医疗影像同时书写对应的报告是当前诊疗过程中不可缺少的步骤。医疗影像的分析和解读是一项具有挑战性的工作,医生有可能会因为劳累或缺乏足够的经验而出现错误分析,造成疾病漏诊误诊的问题,导致病人错过最佳治疗时机;而对经验充足的医生而言,这是一项费时又枯燥的工作,且造成了医疗资源
论文部分内容阅读
如今不同科学技术发展迅速,在当前时代背景下医疗影像技术也有了飞速的进展,医疗影像在临床诊疗、教研科学等方面具有重要的作用,分析解读医疗影像同时书写对应的报告是当前诊疗过程中不可缺少的步骤。医疗影像的分析和解读是一项具有挑战性的工作,医生有可能会因为劳累或缺乏足够的经验而出现错误分析,造成疾病漏诊误诊的问题,导致病人错过最佳治疗时机;而对经验充足的医生而言,这是一项费时又枯燥的工作,且造成了医疗资源的浪费。在此形势下,基于计算机辅助的医疗影像报告生成技术成为时代的需求。应用人工智能技术进行医疗影像报告生成的研究还处于起步阶段,目前只局限于放射性影像报告的生成,还未出现针对其他医疗影像报告生成技术的研究。本论文提出了一种医疗影像报告自动生成方法,主要工作内容包括以下几点:(1)针对海量医疗影像数据相似度高的问题,提出基于多网络融合的医疗影像分析方法,采用多深度神经网络融合的方式对医疗影像的病理信息进行抽取,提升模型抽取影像各类特征信息的能力,以实现对医疗影像的精确分析。(2)针对影像报告中不同组成部分文本特性不同的问题,采用不同的网络模型进行报告生成,其中疾病诊断依靠疾病自动检测模型实现,而描述报告生成则通过文本生成模型获取,保证不同部分报告的准确性。(3)充分利用不同医疗信息间的相互联系,基于此提出双分支网络结构,并针对具体应用细化出面向高相似度病症区分和疾病自动检测的不同网络模型,将医疗信息的因果联系应用于模型训练中,提升模型的预测能力。(4)基于编码-解码架构实现描述报告的文本生成,其中文本解码器为长短期记忆网络,通过对比实验选取效果最好的图像编码器,并加入注意力机制,在生成文本的同时关注图像的区域信息,提高文本生成的准确性。(5)结合疾病自动检测和描述报告生成模型,构建一个端到端的医疗影像报告生成框架,实现智能快速的医疗影像报告生成。
其他文献
伴随着信息技术以及各种互联网企业的迅猛发展,面对爆炸的数据以及种类繁多的新业务,传统老旧的运维方式已经不能满足一个大型企业的需求,高昂的人力成本也是人工运维必须要去面对的一个问题。在此场景下,一个高智能化的运维系统显得尤其重要。因此,针对上述问题,人们提出了一种基于机器学习的智能化运维(AIOps)技术来解决这些困难。容量分析是智能运维(AIOps)中极为重要的一个部分。本文研究的电信运维容量分析
源代码搜索是指根据自然语言查询语句获取对应的函数代码片段。其中主要涉及了自然语言处理技术,并通过将自然语言处理技术引入到源代码文本上,实现跨越自然语言与源代码两种模态形式进行搜索。现有的方法基于传统的序列表示模型分别处理自然语言语句与源代码文本输出形成向量表征形式,经过相似性比对实现搜索任务。但传统的序列表示模型例如词包模型、循环神经网络模型等对语义的特征能力抽取不足,而源代码信息含量对比自然语言
在问题规模不断增大的背景下,机器学习和深度学习的应用门槛越来越高,且需要极具经验的人工干预。然而,人工干预往往需要耗费大量的时间和计算成本。为了更好的解决上述限制,本文针对机器学习和深度学习流程中的超参数优化以及模型选择两个流程进行深入研究并实现高效的算法。对于超参数优化问题,本文以强化学习作为技术支持,实现了一种超参数优化方法。该方法通过序列选择各个超参数的方式,能够减少每一步超参数的搜索空间,
知识图谱已经在各行各业中得到了很好的应用,如法律、医疗、金融等领域。然而软件知识领域至今还没有相应的知识图谱得以建立,因此构建软件知识领域知识图谱显得十分重要。其次将软件知识图谱融入到软件领域个性化习题推荐中,可以增强推荐的科学性和可解释性。本文针对目前软件知识领域中的知识图谱构建及其相关技术问题展开了相关的研究,主要研究内容如下:对软件知识领域知识图谱的关键技术展开综述。由于目前关于领域知识图谱
近些年,人工智能已经由传统的感知智能逐渐向认知智能过渡,认知智能与自动推理成为研究的重点。如何将深度学习应用于逻辑推理,从而让机器具备思考和推理能力将是人工智能的重大突破口。本文的研究内容是基于图同构的初等数学推理引擎的设计和构建,推理引擎的系统设计理念基于产生式系统,并涉及到知识表示和实例化规则库的构建两部分。具体研究内容如下:(1)初等数学的知识表示知识表示是类人解答系统求解问题的第一步,只有
目前工业企业对于如何利用现有数据推动数字化转型,提升业务效率并没有十分明确的思路。针对这种现象,探索工业大数据的采集、分析与应用成为了大数据领域研究与发展的一个新方向,并且有必要建立一个专属的数据挖掘平台为工业数字化转型提供生态建立的支点。本文以工业大数据为基础、以工业应用场景为研究对象,挖掘工业应用场景中的通用化模块,并基于Hadoop分布式框架和Spring Cloud微服务框架实现一个能够对
新闻作为人们获取信息的一种重要手段,在推荐系统领域是一个研究热点。一个好的新闻推荐系统会吸引大量的用户,并且不同用户在不同地点的阅读需求是不同的,将地理位置这一因素加入到推荐系统中,可以使新闻推荐系统更有价值。基于此,本文设计了一种基于地理位置的个性化新闻推荐系统,本文的主要工作如下:(1)本文基于Flink分布式流式计算引擎,结合地理位置上下文信息,设计并实现了基于地理位置的个性化新闻推荐系统。
传统电信系统中的运维平台由于历史架构原因,与业务模块耦合较大,使得新模块的接入和兼容工作繁琐,开发效率低下,增加额外运维工作难度。同时运维平台需要关注服务的日志信息,通过过滤获取异常数据进行报警,传统运维平台中采用静态阈值过滤数据导致高负载机器出现大量无效报警影响运维效率。本文通过新的架构模式并运用不同的异常检测算法来解决上述两个问题。首先,本文按照软件工程开发流程,基于微服务架构中核心的服务治理
声纳图像作为准确获取水下信息的重要途径之一,在国防、军事、工程等方面发挥着巨大作用。然而,由于水声信道的复杂多变和声波本身的传播损失,声纳图像往往呈现出分辨率和对比度不高、噪声干扰严重、目标轮廓模糊等特点。虽然对于光学图像的预处理和分割已有大量效果很好的算法,但研究针对声纳图像特点的处理方法仍是极具应用价值的。本文主要聚焦于声纳图像预处理中的去噪、增强两个方面和声纳图像分割方法,开展了以下研究工作