【摘 要】
:
增生性瘢痕是人体皮肤创口过度修复的一种并发症,该皮肤病症会在视觉外观、机体功能和心理健康对患者造成多重负担。色泽是增生性瘢痕生长和活动最直观的特征,颜色与光泽分别反映了其扩张血管的分布和色素的沉积情况,准确客观的瘢痕色泽评估对其诊治和研究具有关键作用。临床上多通过肉眼观察或徒手触诊在评分量表中对瘢痕进行评估,存在着主观性较大和重复性不佳等缺点,并且专业医师的数量与发病人数以及频繁复诊的需求难以匹配
论文部分内容阅读
增生性瘢痕是人体皮肤创口过度修复的一种并发症,该皮肤病症会在视觉外观、机体功能和心理健康对患者造成多重负担。色泽是增生性瘢痕生长和活动最直观的特征,颜色与光泽分别反映了其扩张血管的分布和色素的沉积情况,准确客观的瘢痕色泽评估对其诊治和研究具有关键作用。临床上多通过肉眼观察或徒手触诊在评分量表中对瘢痕进行评估,存在着主观性较大和重复性不佳等缺点,并且专业医师的数量与发病人数以及频繁复诊的需求难以匹配。近年来,快速发展的图像识别技术为瘢痕的色泽评估提供了新的思路。移动设备和互联网的结合为实现一种无创无痛、简单客观、快速准确的瘢痕色泽评估辅助诊断系统提供了技术基础。本文旨在研究基于图像的瘢痕色泽评估预测方法,为此展开了如下的研究工作:首先建立了一个具有类别多样性的瘢痕图像数据集。收集并整理了1360张覆盖四肢和躯干等身体部位的临床瘢痕图像,针对样本图像存在的噪声和偏色问题进行了图像降噪和色彩常恒性校正等预处理操作,提高了数据集的质量。其次研究了基于深度学习模型的瘢痕色泽识别评估方法。分析了经典深度学习网络结构、卷积特征、瘢痕图像的特点和迁移学习策略,在经典网络模型的基础上提出了两种改进网络:Goog Le Net-Scar和Shuffle Net-Scar。通过实验对比了改进模型与其它经典深度学习网络的识别性能,实验表明:改进网络在大幅减少参数量的情况下依然取得了高于原模型的准确率和特异性,对瘢痕图像评估任务具有更强的适应性。然后研究了传统机器学习下基于图像的瘢痕识别评估方法。对于传统图像分割算法在瘢痕数据集中分割效果不佳的情况,本文采用Deep Lab V3+分割方法完成了对瘢痕病灶的精准分割。接着从分割图像中提取颜色和纹理特征共44个,并采用主成分分析法进行了特征融合优化,随后训练了K近邻算法和支持向量机两种分类器。结果说明:颜色特征在评估中占主导地位,在评估瘢痕色泽混淆度较大的图像时,纹理特征能显著提高准确度,而优化后的特征能进一步提高识别的整体性能。最后应用多分类问题的一对一分解策略将瘢痕色泽评估任务划分为多个子问题的组合,并结合瘢痕生长规律和呈现的阶段性特点提出了多层级瘢痕评估算法。分别将算法应用到深度学习模型和传统机器学习的分类阶段,实验结果显示:多层级评估算法进一步的提升了评估的性能,能将误判情况往最相近的类型靠拢,从而减少评估误差。本文研究可以为瘢痕辅助诊断系统的应用提供新的技术参考。
其他文献
回旋速调管作为回旋放大器具有高输出功率以及具有一定带宽的特点,在兆瓦级输出上有独特的优势。在电子干扰、雷达、通信、可控热核聚变、等离子加热等方面有广泛的应用前景。本文主要研究Q频段兆瓦级回旋速调管,对回旋速调管高频结构设计过程和线性理论进行研究和分析,通过冷腔分析和粒子模拟进行优化设计,并结合工程化工作系统探索了高阶工作模式的回旋速调管高频结构,主要研究内容如下:1、阐述了高功率毫米波放大器和回旋
基于变电站高压电气设备可靠性研究,介绍高压电气设备可靠性研究的发展历程,讨论常用电气设备的可靠性分析方法,比较解析类和模拟类等方法的优缺点,分析最佳应用场合,研究复杂系统下的组合法和状态法,对基于多种方法交叉融合的未来可靠性分析研究趋势进行展望。
随着国家“碳达峰”与“碳中和”的“双碳”目标的提出,解决环境污染与能源紧缺问题迫在眉睫。近年来纯电动汽车(Battery Electric Vehicle,BEV)因环保无污染、低噪声、效率高等众多优点受到广泛关注。但传统纯电动汽车中的动力电池存储的电量少,续航里程受限,频繁的大电流充放电会缩短动力电池的使用寿命,影响动力电池的安全性能。本文在某车企研发的一款纯电动汽车的基础上增加超级电容储能模块
将原图像去掉一些像素,得到依旧保持原拓扑结构的形状即为图像的细化处理。对图像进行细化处理得到的骨架化图像可以简洁直观地表现图像的几何特征,有利于分析图像的拓扑结构,在机器视觉、形态学以及模型识别方面都得到了广泛应用。已报导细化算法获得的处理结果容易出现骨架断裂、毛刺、偏离中轴、扭曲以及新增加孔洞等缺陷的问题,本文将上述问题称之为骨架的结构失真现象。出现失真的骨架一般会影响到后续信息识别、主体分析和
单脉冲技术能在单个雷达脉冲内实现波束指向控制、跟踪的目的,是微波频段最为普遍的跟踪体制。在微波毫米波频段,单脉冲天线大多采用波导、微带线、基片集成波导等传输线结构来实现。然而,在太赫兹波段,仍然采用上述传输线结构势必面临损耗大、加工难等问题。目前,提出的准光单脉冲天线馈电方案已经初步证明了实现的可行性,而基于准光技术的单脉冲馈电网络研究尚处于起步阶段,在光路紧凑性、带宽、副瓣电平、能量传输效率等问
线控转向控制系统取消除转向盘和转向执行机构之间的机械连接,利用搭载多种传感器的电子系统控制转向电机与路感电机实现转向操作,是智能车辆安全行驶的重要系统之一。为了保证线控转向系统能精准稳定的执行转向,本文展开了多传感器融合的线控转向系统研究,主要研究内容如下:(1)根据线控转向系统工作原理,设计多传感器融合的线控转向系统硬件方案。以线控转向系统的转向精准度和稳定性作为控制目标,分析转向电机与路感电机
当前微波器件向高频率、高功率、小型化方向发展,固态电子器件虽然在低频段领域有霸主般的地位,但在高频应用中有着功率低,带宽窄等缺点;而真空电子器件虽然功率大、工作频段宽,但是体积大,加工难度大。平面行波管体积小,高效率、宽频带、易加工,同时具备两者的优势,是真空电子学的一重要研究方向。因此开展微带线行波管研究,为新型行波管提供技术支撑具有重要意义和价值。本文的主要研究内容如下:(1)设计一种以金刚石
新冠病毒已经在全世界200多个国家和地区爆发,对全球经济和人类社会构成严重威胁。传统新冠病毒检测方法具有成本高、耗时长、操作过程较为复杂和繁琐等缺点,限制了其广泛应用。因此迫切需要研究和开发一种快速、高效、高灵敏、低成本的新冠病毒检测方法具有重要的研究价值。针对这种需求,本论文设计和研究了一种基于Kretschman结构的微分相位SPR探测系统,该探测系统的波长探测范围是640 nm-800 nm
回旋行波管作为高功率微波辐射源,在民用、军事领域等领域发挥着重要作用。回旋行波管不断向高频率方向研究和发展,220 GHz是一个重要的大气窗口,也是毫米波到太赫兹的过渡频段,具有着重要的研究意义。在短毫米波及太赫兹频段,高阶工作模式是回旋行波管的一个研究方向,但存在的众多竞争模式会使回旋行波管更加难以稳定工作。本文研究了220 GHz以高阶模式TE32为工作模式的非周期性介质加载回旋行波管,其具有
电子源是微波电真空器件的核心部件之一。随着信息技术的进步,电子器件不断往高频率、小型化和集成化方向发展。受尺寸共渡效应的影响,微波真空器件的频率不断提高,所需的电流密度不断增加,而尺寸却越来越小,传统的热阴极已难以满足高频率太赫兹器件的需求。冷阴极具有无需加热、体积小、电流密度大等特点,是毫米波和太赫兹器件的理想电子源。然而冷阴极由于发射不均匀,引起局域发射尖端热量聚集严重。在极端条件下,冷阴极的