【摘 要】
:
荧光测温通常基于温度依赖的荧光强度,荧光寿命和比率发光强度。由于其非接触式检测、高时/空分辨率、优异的灵敏度、耐电/磁场特性以及能够捕捉快速移动的目标物体等优势,而受到广泛关注。其中,比率型荧光测温因其自参考特性,可提供更可靠和准确的测量。这使得传感行为不受荧光团浓度、激发源/检测器波动和荧光背景的干扰。比率型荧光测温通常依赖于不同颜色发射体之间的能量传递,但是这会降低初始显著不同的温度响应差异,
论文部分内容阅读
荧光测温通常基于温度依赖的荧光强度,荧光寿命和比率发光强度。由于其非接触式检测、高时/空分辨率、优异的灵敏度、耐电/磁场特性以及能够捕捉快速移动的目标物体等优势,而受到广泛关注。其中,比率型荧光测温因其自参考特性,可提供更可靠和准确的测量。这使得传感行为不受荧光团浓度、激发源/检测器波动和荧光背景的干扰。比率型荧光测温通常依赖于不同颜色发射体之间的能量传递,但是这会降低初始显著不同的温度响应差异,从而导致灵敏度和重复性较差。因此,抑制能量传递有望成为实现高性能比率型传感的一种新型策略。本文将两种耐热型单发色团掺杂,通过改变其中长波长处发色团的掺杂浓度,制备一系列不同掺杂浓度的薄膜。系统的光物理研究表示,在受体掺杂比高达60%时,能量传递效率仅为34.71%;进一步增加掺杂浓度至80%时,能量传递效率还略微下降为32.58%。这说明在参杂薄膜中的能量传递受到了抑制。原子力显微镜(AFM)相图分析揭示当受体掺杂浓度为40%时,薄膜样品中在微纳米孔处附近形成明显的相分离。正是这种通过增加受体掺杂浓度诱导的微区相分离,有效抑制了能量传递的效率。基于以上对掺杂薄膜中能量传递受抑制的机制研究,我们开发了一种经济实用、易于制备的比率型有机荧光高温温度传感器。其最大绝对灵敏度(Sa)和最大相对灵敏度(Sr)分别可达1.49×10-2K-1(464 K)、1.12%K-1(429 K)。对于Sr高于0.5%K-1时,有效的高温区域温度传感范围从375 K至509 K跨度134 K,最优温度分辨率为0.39 K。该薄膜温度计还具有优异的可逆性、稳定性和可重复性。此外,仅通过裸眼监测荧光颜色的变化,即可指示不同的温度,因此可用于防伪加密领域。此外,将具有较大斯托克斯位移的ESIPT黄光材料与耐热型短波长发射体掺杂,通过减小光谱重叠,完全阻断能量传递,用于比率型有机荧光高温温度传感。其最大绝对灵敏度(Sa)和最大相对灵敏度(Sr)分别为1.684×10-2K-1(459.87 K)和1.223%K-1(414.62 K)。温度分辨率在温度区间从293 K~493 K,均低于0.5 K,较低的温度分辨率分别为0.067(393 K),0.062(453 K),0.066(473 K)。这些工作为设计受抑能量传递型比率发光薄膜温度传感器提供了新的思路。
其他文献
铯铅卤钙钛矿(CsPbX3,X=Cl,Br,I)纳米晶(NCs)具有高的色纯度、荧光量子产率(PLQY)、缺陷容忍度以及波长可调的发射光谱等优点,在显示与照明领域具有很好的应用前景。随着钙钛矿合成与应用研究不断深入,红光、近红外光以及绿光钙钛矿发光二极管(LED)的最大外量子效率(EQE)已经超过了20%,可以和商用OLED相媲美。但是钙钛矿稳定性较差,限制了其LED的实际应用。CsPbBr3是绿
最近几十年以来,随着人们对于有机半导体研究的不断深入,具有制造成本低、可实现柔性功能、可大面积制备等优势的有机场效应晶体管(Organic Field-effect Transistor,OFET)应运而生。现如今,OFET凭借其可媲美无机场效应晶体管的性能在有机电子学领域占有一席之地,以至于在集成电路、生物学、传感等多个应用领域都可以看见OFET的身影,对人们的日常生活以及科学研究都具有重要的价
喷墨打印被认为是用于高分辨率、大规模和低成本电致发光二极管的最有前途的技术,其具有材料利用率高、无需掩模的可图案化和较低的制造成本等优点。因此,喷墨打印技术拥有广阔的研究前景和产业化价值。但是,在喷墨打印技术被应用于电致发光二极管时,有机层在非极性溶剂中溶解度相似,因此多层印刷的过程中会出现有机层相互溶解的现象,使得多层打印的有机功能层薄膜的均匀性降低从而影响器件的性能。此外,“咖啡环”现象的出现
全无机钙钛矿(CsPbX3,X=Cl、Br、I)纳米晶(NCs)具有较高的光致发光荧光量子产率(PLQY)、高的色纯度和良好的溶液加工性能,在显示与照明行业具有很大的发展潜力。目前,绿色、红色和近红外钙钛矿发光二极管(LED)的最大外量子效率(EQE)超过了20%,仅就效率而言已经满足了商业需求。但是红色CsPbI3的稳定性较差,限制了其LED的实际应用。CsPbI3材料稳定性差主要来源于晶相和环
金属卤化物钙钛矿纳米晶(NCs)以其独特的光电特性吸引了大众的目光,包括高的荧光量子产率(PLQY)、窄的半峰宽(FWHM)、波长可调的发射光谱、高的色纯度及高的缺陷容忍度等。除此之外,钙钛矿NCs可通过溶液加工合成、节约成本以及制备工艺简便。传统制备CsPbBr3 NCs(以热注入法和配体辅助再沉淀法为主)的方法已经非常成熟,然而高温热注入法使用的甲苯分散剂以及配体辅助再沉淀法使用的N,N-二甲
在传统的排队网络中,顾客在节点之间的转移通常假设是瞬间完成的,而在现实的应用场景中,这种假设有时不符合实际情况,本学位论文考虑了一种顾客延迟到达的排队模型,分析了顾客在节点之间转移的过程中可能发生的三种情形。针对以上问题,本文主要研究内容有如下三个方面:(1)首先,讨论了延迟到达排队问题,对于一个排队系统,在顾客进入服务系统之前增加一个延迟进入的过程,并建模为延迟到达排队模型,增加的延迟到达过程可
毫米波是推动第5代(5th Generation Wireless Systems,5G)无线通信未来快速发展的关键技术。由于毫米波波长短,受路径损耗的影响较大;通过充分利用超大规模天线阵带来的阵列增益,能够弥补路径损耗的影响;且毫米波系统中的天线尺寸小,能够容纳大规模天线,因此毫米波结合大规模多输入多输出(massive multi-input multi-output,massive MIMO
城市轨道交通的不断发展使得轨道交通列控系统(Communication Based Train Control,CBTC)安全性能的要求不断提高,CBTC系统是能够实现列车与地面之间的互相通信以及列车在行驶过程中的自动安全控制功能。目前,轨道交通CBTC系统的车地通信基于无线信号传输,而这种开放式的传输环境极易受到外界无线信号的干扰,严重的影响了列车控制系统的安全运行。因此,对于轨道交通信号质量安
柔性电子学带来了许多令人瞩目的成果,目前已经在显示器、半导体、钙钛矿电池以及嵌入式设备等领域做出突破。可拉伸电子作为柔性电子学的衍生学科,能适应更为复杂的应用场景,满足日常生活的需要,愈发受到人们的重视和关注。与此同时,开发能与可拉伸电子相匹配的可拉伸储能器件迫在眉睫。锂电池作为成熟的商业储能器件,有着能量密度高、自放电低、使用寿命长等优点,是实现可拉伸储能器件的理想选择。本文围绕实现可拉伸锂电池
癌症对人类的健康构成了极大威胁,因此亟需开发高效和低成本的癌症纳米诊疗探针平台。常见成像方式有磁共振成像和计算机断层扫描技术等,其缺点是成本较高、分辨率与灵敏度有限。为了解决这些局限问题,基于纳米光学材料而开发的荧光成像技术引起了广大科研者的极大关注。迄今为止,荧光成像技术因为具有空间分辨率和灵敏度高的优点,已被临床广泛使用。目前的荧光成像主要集中在可见光(400-650 nm)和近红外光(NIR