AC=BD理论在偏微分方程机械化求解中的应用

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:kathrynde
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文根据数学机械化的思想,在导师张鸿庆教授“AC=BD”理论的指导下,研究在弹性力学、流体力学、空气动力学、等离子体物理、生物物理和化学物理等现代科学技术中引出的非线性偏微分方程求精确解的方法。全文分为三章: 第一章,介绍了数学机械化的思想与应用的情况;回顾了孤立子研究的历史与发展以及非线性偏微分方程精确解的若干构造性方法,同时介绍了一些关于该学科领域的国内外学者所取得的成果。 第二章,在“AC=BD”统一理论框架下考虑非线性偏微分方程(组)精确解的构造。给出了“AC=BD”理论的基本思想和应用,通过具体的变换给出了构造C-D对的算法。 第三章,主要介绍了一种构造非线性发展方程的代数方法,改进了该代数方法,并以几个的非线性发展方程为例,说明了改进的代数方法的具体应用。改进后的方法可以获得非线性发展方程(组)的更多形式的精确解。
其他文献
关于一类非局部抛物方程组解的整体存在与爆破,论文考虑一类具有非局部源项抛物方程组。借助于上下解技巧,给出了解整体存在和有限时刻爆破的条件,建立了爆破解的爆破速率估计
本文主要研究C中有界域上的逆紧全纯映射理论,全文共分三章。 第一章介绍了关于逆紧全纯映射方面的知识,特别是拟凸域上逆紧全纯映射的知识。概述了时下C中有界域上逆紧全纯
Web日志中包含了大量的用户浏览信息,如何有效地从其中挖掘出用户浏览兴趣模式是一个重要的研究课题。本文以Web日志中的点击流数据为基础,从统计分析和智能分析出发,引入Web挖
连通图的临界群是图生成树数目的一个加细,它是定义在图上的一个有限交换群。其群结构是图的一个精细不变量,它与图的Laplacian理论密切相关。本文主要研究3-循环图的临界群和
这篇论文深入研究了两个双曲方程的均匀化问题,一个是拟线性双曲方程的均匀化,另一个研究了带有振荡项的半线性双曲波动方程的全局吸引子的均匀化估计。 具体地说,本文利用一
风险理论是当前精算界和数学界研究的热门课题. 最初人们主要借助随机过程理论来研究复合泊松风险模型, 主要是研究破产概率、破产时的赤字、破产前瞬时盈余、破产时等精算量
本文主要研究了一类新型非线性浅水波方程(Dullin-Gottwald-Holm方程,简称为DGH方程)的散射理论和Cauchy问题的适定性理论。DGH方程是Dullin,Gottwald,Holm从Euler方程出发,利用
本文用图G来作为互连网络拓扑结构的模型.图G的直径是网络延迟和通信有效性的重要度量.在实时系统中,信息传输延迟被限制在某个时间内,超出这个时间接收到的信息是无效的.一种
本研究利用压缩感知理论进行水声信号测向,以正方形四阵元为模型,通过计算机仿真,说明了该方法的有效性。首先介绍了压缩感知的理论知识以及它的重构算法:匹配追踪算法和正交匹
连分式可以被看作M(o)bius变换的序列.上个世纪,连分式的解析理论在数学家Jones,Thron和Lisa等研究下已不断发展,并且广泛应用于超越函数、控制论、渐近级数等方面.近年来,Beardo