论文部分内容阅读
随着社会的发展,人们对于设备的依赖性越来越强。现代战争的快速部署和灾后的快速救援都对运输装备提出了更高的要求,要求运输装备对于非结构环境具备较高的灵活性和适应性,能够成功并快速的完成指定任务。本文结合实验室自拟课题“轮腿复合式移动机器人”,对机器人的越障能力和控制系统进行了研究,具体研究工作如下:基于室外机器人行走机构功能分析和设计要求,设计了轮腿复合式移动机器人行走机构。机器人由车体和6套轮腿系统组成,轮腿系统采用模块化设计,拆装方便。轮腿系统与车体的机械和电气接口完全相同,可直接互换。根据机器人的功能要求,分析了机器人不同阶段对驱动电机的功率需求,选择了合适的驱动电机。建立了机器人平面差速转向运动学,并建立了空间姿态运动学、水平路面行驶运动学和四轮行驶运动学模型,为轨迹跟踪、空间定位和越障规划提供了依据。对垂直障碍和壕沟等典型地形进行了越障动作规划,并用几何法和稳定性约束条件分析了机器人跨越典型障碍的能力,最后用ADAMS对越障规划进行了仿真验证,证明了越障动作规划的可行性。建立了主从式控制系统,利用USB-CAN总线适配器实现了上下位机间的CAN通信;利用TMS320LF2407A DSP和EPM3128 CPLD设计了电机控制器,利用VHDL语言实现了CPLD对电机光电编码器信号的采集处理和与DSP间的SPI通信;完成了对行走驱动电机的速度伺服控制和对摆臂驱动电机的位置伺服控制。利用LMD18200设计了电机驱动器,为增加轮腿系统对车体支撑的可靠性,为摆臂驱动电机安装了制动器,并设计了继电器驱动板。最后,完成了对机器人整机的调试和初步试运行,通过对垂直障碍、壕沟等典型障碍的越障实验,验证了机器人行走机构对复杂地形的灵活性,证明了前面越障规划的可行性和越障能力分析的正确性。