【摘 要】
:
本文主要运用扩展的tanh法,李群理论,推广的CK直接约化法等方法对几类非线性发展方程进行了研究,如5阶色散方程,广义 MKP方程,(2+1)维扩展Zakharov-Kuznetsov方程,广义变系数
论文部分内容阅读
本文主要运用扩展的tanh法,李群理论,推广的CK直接约化法等方法对几类非线性发展方程进行了研究,如5阶色散方程,广义 MKP方程,(2+1)维扩展Zakharov-Kuznetsov方程,广义变系数Kuramoto-Sivashinsky方程,得到了这些方程一些新的精确解. 第一章是通过李群理论求出5阶色散方程的对称,再利用这些对称及tanh函数变换法,( G/G)-展开法以及借助Riccati辅助方程求出5阶色散方程的某些精确解. 第二章利用对称性计算广义MKP方程的对称,在求得的对称与原方程相容的基础上,一些广义MKP方程的精确解被求出,包括三角函数解、雅可比椭圆函数解、双曲函数、有理函数解、多项式解等. 第三章应用经典李群法求得了(2+1)维扩展Zakharov-Kuznetsov方程的对称和群不变解,接着对方程进行约化,再通过解约化方程得到了该方程的一些精确解,包括三角函数解、周期解、双曲函数解、Jacobi椭圆函数解. 第四章应用修正的CK直接约化方法,得到了广义变系数 Kuramoto-Sivashinsky方程与其对应的常系数方程解之间的关系,利用李群方法得到了常系数Kuramoto-Sivashinsky方程的一些显式解,从而获得了广义变系数Kuramoto-Sivashinsky方程的新解.
其他文献
本文具体概述了Beurling-Ahlfors扩张的伸张函数的估计的发展过程和μ(z)-同胚的相关性质。
在高速发展的新时代,一个人的自信心有可能会改变一个人的命运.纵观中外许多成功人士,我发现他们身上都有一个共同的特点,那就是有超乎常人的强大的自信心.作为教育工作者,我
称有限群G的一个Cayley图г是G的一个正规Cayley图,如果G的右正则表示R(G)是图г的全自同构群Aut(г)的一个正规子群;称一个无向图г是半传递图,如果Aut(г)在图г上的作用是点
在矩阵理论中,非线性矩阵方程的求解问题是近年来研究和探讨的重要课题之一.它在应用物理,生物科学,工程技术,经济理论,管理科学等自然科学的许多领域都有重要应用.本篇硕士
一、为何参加本课题的研究rn随着时代的发展及网络时代的来临,农村留守儿童,空巢老人大量增加.独生子女占据了农村儿童的主流,心理健康问题逐步显现出来,骄横暴力、自我中心,
大学生法律援助是一个以大学生为主体,在法律援助中心和高校领导下,为经济困难公民和在校大学生提供法律援助,维护其合法利益的社会组织。大学生具有参与法律援助的热情与优势,但
石头是最普通的,随处可见,遍地可拾;石头又是最特别的,各具特色,世间无二。中国人爱玩物,石头便成了最易得也最不易得的玩物,爱它的奇妙无极,爱自然的神工鬼斧。The Stone is
故园三径~2吐幽丛,一夜玄霜~3坠碧空。多少天涯未归客,尽借~4篱落~5看秋风。注释:1.唐寅(1470—1523),字伯虎,一字子畏,号六如居士、桃花庵主等,苏州府吴中(今江苏苏州吴中区
若A和B都是C*-代数,L1和L2分别是其上的*-半范数,(ψ)是A到B上的*-同态,本文主要讨论在何种半范数下,任取(ψ)(Af)中的元素,在Af中都能找到保范的提升元,并得出了如下的结论:
在初中道德与法治教学活动中,应该体现出情感因素和知识因素的和谐统一.教学活动需要师生之间的积极互动,才能有效提高教学效率.在教学活动中,加强情感教育是一种普遍存在的