论文部分内容阅读
研究植被、物种分布与环境的关系一直是生态学中的重点。长期以来,在全球变化与陆地生态系统的研究中,主要研究重点是对大尺度植被分布的模拟和预测,并建立了大量的气候-植被分布关系模型。而对于物种潜在分布的模拟和预测,国内外相关的研究较少。近年来,随着统计技术和地理信息系统的发展,用于预测物种分布的统计模型技术得到了迅速的发展。统计模型技术已被广泛应用于生物地理分布、植物群落、生物多样性、气候变化影响评估等方面。本论文基于当前在物种分布研究中应用广泛的广义线性模型、广义加法模型及分类回归树3种统计模型技术,对我国常见树种的地理分布进行模拟分析,并比较不同模型模拟精度的优劣,将模拟精度较高的模型应用于预测未来气候情景下我国几种主要树种的未来潜在地理分布。基于建立的广义线性模型(GLM)、二次项逐步回归广义线性模型(SGLM)、广义加法模型(GAM)和分类回归树(CART)4个模型对我国20种常见树种地理分布进行模拟,结果表明,4个模型均有较高的模拟精度。GAM的模拟精度最高; 添加二次项并进行逐步回归有效的提高了GLM的模拟精度; CART是一种基于规则的模型技术,模拟结果比GLM稍好,比GAM略差。对不同树种的模拟分析表明,4个模型对于主要分布在暖温带落叶阔叶林区域的油松、辽东栎分布的模拟结果较差; GLM对分布在温带针阔混交林中红松、蒙古栎、胡桃楸和糠椴的模拟结果不太理想; 4个模型对分布在中国亚热带常绿阔叶林区域的树种均表现出较高的模拟精度; 对广布种也表现出很高的模拟精度。结合地理信息系统,以地图形式将青冈、油松的模拟结果表示出来。结果表明:地理信息系统直观的反映出了模型模拟结果差异。4个模型均能很好模拟青冈的分布,且模拟结果接近; 而对油松分布模拟结果4个模型均不甚理想,以GLM