论文部分内容阅读
在强关联电子体系中,可以通过压力、磁场或者元素替换等手段调节电子相互作用的强度,从而诱导量子相变。另一方面,体系的能带结构能够通过自旋轨道耦合强度的改变发生拓扑性质的变化。尽管当前对能带拓扑性质的研究主要集中于可被单电子图像所描述的系统,但具有强电子关联效应的拓扑材料因其独特的性质,对量子计算等新技术领域的发展有重要意义,成为了拓扑材料领域新的热点。为了寻找理想的关联拓扑候选材料,我们研究了一系列镧系磷族化合物。这类材料属于高轨道角动量关联电子体系,因而具有丰富的基态和良好的自旋轨道耦合及电子关联强度可调控性。通过多种调控手段,并结合各类物性的测量,我们系统地表征了这些化合物中的磁性相变,能带拓扑性质以及相关的物理行为,研究了电子关联效应与自旋轨道耦合强度对能带拓扑性质及相关物性的影响。Ce2Sb/Bi为四方晶系的反铁磁重费米子材料,能带计算结果表明该类材料是潜在的关联拓扑材料。之前由于缺乏高质量的单晶样品,其各向异性研究以及磁场下的相图仍空缺。我们通过助熔剂方法合成了高质量单晶样品,从而确定了两个样品完整的温度-磁场相图表明,并表明两个材料在低温都存在磁场诱导的三临界点。同时我们通过Ehrenfest关系预测Ce2Sb中的三临界点在高压下可被抑制到零温,从而实现量子三临界点。这个工作有助于理解自旋涨落理论并为探究非常规量子临界点提供指导。XSb/Bi(X=Ce,Pr,Sm)具有中心对称的面心立方结构以及丰富的磁性基态。输运性质的测量表明这些材料都具两能带结构和电子空穴补偿效应导致的巨磁阻效应。通过量子振荡相位分析,理论计算及角分辨光电子能谱等多种手段相结合,我们系统地探究了体系的拓扑性质,并发现通过对体系组成元素的替换可以实现自旋轨道耦合强度以及4f电子数目调控的两种拓扑相变。另外,我们还系统地研究了 PrSb和PrBi样品中能带结构对外加强磁场的响应,并观测到了 SmSb样品中常规Lifshitz-Kosevich理论无法解释的新奇量子震荡。XPtBi(X=Ce,Sm)具有晶格空间反演对称性破缺的立方结构。这种特殊的晶格对称性迫使Kramer点上电子与空穴能带简并,且在非Kramer点的高对称点上打开空穴能带的简并度,从而在费米面附近形成三重简并点。当引入外加磁场破坏体系的时间反演对称性时,三重简并点可以被撕裂为一对Weyl点,从而可以导致独特的手性异常效应。这使得我们可以在转角磁阻测量实验中观测到手性电流导致的径向负磁阻效应。这些工作为探究关联拓扑材料中的特殊热电、光学响应提供了理想的实验平台。