【摘 要】
:
DNA序列中包含着丰富的遗传信息,DNA测序技术对于基因突变的检测、遗传病诊断、犯罪调查等都有着至关重要的作用。从第一代的Sanger测序法发展至今,测序原理和技术一直在不断更新。如今以纳米孔为代表的第三代测序技术,高通量、低成本、单分子无标记的测序方式,已经有了商业化测序产品。近些年来,基于纳米孔的测序技术飞速发展。固态纳米孔与生物纳米孔等方面都取得了不错的进展。固态纳米孔除了DNA分子探测功能
【机 构】
:
中国科学院大学(中国科学院物理研究所)
【出 处】
:
中国科学院大学(中国科学院物理研究所)
论文部分内容阅读
DNA序列中包含着丰富的遗传信息,DNA测序技术对于基因突变的检测、遗传病诊断、犯罪调查等都有着至关重要的作用。从第一代的Sanger测序法发展至今,测序原理和技术一直在不断更新。如今以纳米孔为代表的第三代测序技术,高通量、低成本、单分子无标记的测序方式,已经有了商业化测序产品。近些年来,基于纳米孔的测序技术飞速发展。固态纳米孔与生物纳米孔等方面都取得了不错的进展。固态纳米孔除了DNA分子探测功能外,还能够实现DNA分子修饰检测、蛋白质检测和分子折叠探测等功能。生物纳米孔测序技术不仅实现了DNA分子测序,还能够识别DNA分子上的甲基化修饰信息。基于离子电流的纳米孔测序技术,日臻成熟并且不断突破。本论文的开展基于纳米孔测序技术,探测纳米孔中纳米结构动力学等相关问题。研究内容主要包括:1.基于固态纳米孔单分子探测手段,利用氮化硅纳米孔探测四面体DNA纳米结构的穿孔动力学。当纳米孔孔径比四面体DNA纳米结构稍大一点时,在电流信号中可以清楚的看到四面体DNA纳米结构的穿孔事件。阻孔电流与穿孔时间的统计分析结果表明,四面体DNA纳米结构的穿孔行为类似于双链DNA分子,都可以用一维有偏扩散模型描述。利用四面体DNA纳米结构作为线性DNA分子上的标记物,构建了三种类型的分子。分子穿孔电流信号中,可以清晰看到四面体DNA纳米结构引起的额外电流信号。得到了高信噪比穿孔信号。归一化时间位置与四面体DNA纳米结构结合位置一致。2.基于生物纳米孔测序技术,利用商业化测序仪探测解旋酶动力学。解旋酶作用位点与纳米孔测序敏感位置存在一段距离,因此序列信息与每个碱基解旋时间存在偏移量。基于Lab VIEW编程语言,我们编写了用于纳米孔DNA测序信息分析的程序。该程序结合了序列比对算法,能够图像化数据并且批量化处理数据。结果表明,解旋酶对于每个碱基的解旋时间都不相同,解旋作用与碱基化学结构和结合方式都相关,通过测序方式得到了特异性偏移量的信息。顺铂结合DNA分子的测序信息可以获得顺铂分子的结合位点,并且顺铂分子会影响解旋酶的解旋作用。3.我们自主设计了固态纳米孔绝缘衬底的加工模具,利用聚甲基丙烯酸甲酯粉末热熔成型的方式,可以实现绝缘衬底的批量化制备。绝缘衬底可以应用于二维材料的转移。
其他文献
液液相变是指一种液体转变为另一种液体的一级相变,在几乎所有类型的液体中都可能存在。研究液液相变对于理解玻璃和液体的本质具有重要的科学意义。本论文从序参量、热力学模型和动力学角度详细阐述了液液相变的基本特征,着重分析了多种非晶合金形成体系中可能存在的液液相变(或非晶-非晶转变)。经典液体理论尽管可以通过两点密度关联函数来解释液体中简单的动力学行为,但难以解释液体中复杂的动力学行为和由非密度序参量驱动
随着物联网与人工智能概念的逐渐普及,可穿戴式柔性电子器件于近些年展现出了爆发式的增长趋势。与传统刚性衬底(硅、蓝宝石和玻璃等)上的半导体器件不同,柔性电子器件因其可弯曲、质量小、生物相容性好、力学性能可调控等特点被广泛应用在生物医疗监测、环境监视、通讯、柔性显示以及人机交互等领域并深刻影响着我们的日常生活。目前柔性电子器件的能量供给一般都来源于电池,相比于微型的柔性电子器件,无论在体积还是在重量上
非晶合金,因为具有独特的长程无序原子结构而具有高强度、高硬度、大弹性应变极限、耐磨耐腐蚀、铁基成分软磁性能优异等诸多优点,在航天航空、国防军工、生物医药、消费电子、体育器械和珠宝首饰等领域具有广泛的应用或应用潜力,是一种迅速发展的新材料。另一方面,激光作为一种先进技术已被广泛应用于医疗、汽车、航天、科研等众多领域。激光技术经过几十年的发展,已经在氧化物玻璃、陶瓷、钛铝合金、不锈钢等材料上取得了广泛
二维层状材料是近年来凝聚态物理研究的热点,不仅在各个应用领域表现出突出的性能,而且还展现出各种新奇的物理现象。具有类黑磷的折叠蜂窝状结构特征的过渡金属单硫族化合物MX(M=Sn,Ge;X=Se,S),因为具有各向异性的结构特征表现出各向异性的电学,光学,力学和热学特征而备受关注。Sn S是一种环境友好型材料,原料来源丰富,具有良好的化学稳定性。研究二维半导体内部光生载流子的产生,分离和复合过程,对
磁性与磁性材料不仅在人们的日常生活与工业生产中具有重要应用,其新奇的物理现象也吸引了理论和实验物理学家广泛的关注。竞争的相互作用导致阻挫磁体具有独特的基态和激发态行为,这也必将影响其输运性质。此外,实际材料中不同形式的微扰,使这类材料的磁结构与相变过程变得更加复杂有趣。本文首先从经典自旋液体模型的基本性质出发,研究了其守恒量的输运性质。然后,基于实验中阻挫材料的进展,从理论上探索了量子涨落对磁偶极
深紫外探测技术因其空间背底噪声低、灵敏度高等特点而在导弹预警与制导、保密空间通讯、紫外成像、火焰探测和臭氧空洞检测等领域有着及其重要的应用。现有技术中,真空光电倍增管因为体积较大、灵敏度较低等缺点而在实际使用中大幅度受限;硅基光电二极管因为材料带隙小,需要增加多个滤波片以消除长波长杂散光的影响,因此成本造价高且不宜小型化。近年来,基于宽禁带半导体的深紫外光电探测器凭借直接工作在深紫外波段、体积小且
自从2004年由单原子层构成的石墨烯被发现以来,层状材料的种类不断丰富,其研究涵盖了半导体、金属和绝缘体等。在半导体器件应用研究中,二维材料的高迁移率、高表体比、低功耗等优良特性给突破摩尔定律极限带来了新的发展思路。另一方面,其能带结构随着材料维度的变化出现了包括超导、外尔半金属、拓扑绝缘体等大量新奇的物理特性,这给基础研究开辟了新的领域。过渡金属硫族化合物因为其新奇的拓扑性质引起广泛的关注。碲化
钙钛矿结构氧化物是一种用途非常广泛的陶瓷材料,它们本身拥有一些有趣的化学和物理性质。钙钛矿RFe1-xMnxO3(R=稀土元素)材料由于稀土离子和Fe/Mn离子之间复杂的磁相互作用而使他们赢得了更多的关注。最近这些年,对这一系列材料多晶或单晶的研究主要涉及磁结构变化及自旋重取向、铁电性和磁介电效应等几个方面。而对于某些稀土元素的自旋重取向和磁热效应仍值得深入研究。本论文中的一部分内容主要围绕单钙钛
得益于优良的光学、电学、电化学以及力学性能,过渡金属硫化物一直是研究领域的热点,因此被人们广泛的研究和关注。二硫化钼作为过度金属硫化物的代表材料,由于其良好的电子和光学特性,已经被广泛的应用于场效应晶体管研究。本论文研究了基于二硫化钼的场效应晶体管在生物突触模拟以及神经形态计算方面的应用。论文主要取得了如下成果:1、我们设计了一个双栅极MoS2晶体管来实现突触功能和可编程逻辑运算。通过顶部电解质栅
水是天然的阻燃剂和绿色溶剂,以水溶液为电解液的水系二次电池用于大规模储能在安全绿色方面具有先天优势。值得指出地是,Water-in-salt(WIS)电解液的引入成功地将水系电解液稳定窗口由2 V提高到3 V以上,高盐浓度下不仅水的热力学稳定性大大提升,负极侧固态电解质界面(SEI)膜的形成也起到了动力学保护作用。这种高盐浓度具有宽电化学窗口的WIS电解液对实现稳定的高电压长寿命水系电池具有重要意