基于空间曲线自然方程的高速铁路三维高阶连续线形设计研究

来源 :北京交通大学 | 被引量 : 2次 | 上传用户:HUANming520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
速度是高铁的生命线,是高铁的核心竞争力所在,随着运行速度的大幅提高,对列车运行稳定性、安全性有着更高的要求。线路引导列车前进,在高速条件下,列车愈加依赖线路的几何线形提供稳定、安全和舒适的运行条件。受制于计算机技术的发展和三维线路线形表达的复杂性,二维设计方法将线路分解为平面、纵断面和横断面,并分别在不同的平面上进行相应的设计,然后通过平、纵线形组合形成三维曲线,这一方式分别考虑平、纵线形在各自断面的影响,没有考虑设计过程中出现的耦合作用,割裂了线形空间的内在联系,缺乏严格的解析模型,随着列车运行速度的提高,二维设计易造成设计错漏。
  为明确二维设计方式存在的不足,改善线形设计质量以适应高速铁路的发展,本文从高速铁路为空间中的一条三维曲线入手,结合微分几何,以三维曲线的自然方程曲率、挠率为主要参数,对线路的空间线形进行三维化描述、对列车运动模型进行三维化表达、建立三维化的线形控制评价指标、实现空间线形的三维化设计以及设计成果模型的三维化显示,对其中的关键问题进行了深入的研究,主要研究内容和创新成果如下:
  (1)建立了三维线形表达方程,通过曲率、挠率、曲线起点Frenet标架的空间姿态参数对空间曲线进行了完整的表达。以质点运动学的Frenet标架为基础建立了双轴车体运动坐标系,以此为基础建立了列车三维运动模型,并通过该模型以曲率、挠率、Frenet标架等为主要参数研究了列车在空间中的运动规律。研究显示,曲率、挠率确定了曲线的形状,曲线起点Frenet标架的姿态最终决定了曲线的走向;曲率、Frenet标架的侧率是计算车体横、竖向加速度大小的关键因素,曲率变化率、挠率是引起急动度的主要因素,在高速度条件下,不连续的曲率将导致急动度剧增。三维列车运动模型表明,三维设计方式可以更为准确地计算列车在空间中的运动状态,更有利于更高速度的线形设计。联系高速列车的运动特性,以密切平面是否变化为条件将空间线形分为高质量曲线和低质量曲线,为空间线形参数的选取和优化提供了理论依据。
  (2)参考二维线形的设计规范、经验,以乘客舒适度为评价标准,总结得到二维设计中对车体横、竖向加速度和急动度的限值,以该限值作为限制条件,通过计算最终确定了速度300km/h至1000km/h的三维线形设计约束指标,并结合线形连续性,通过该约束指标从三维设计的角度对二维设计线形进行了整体评价。研究发现,三维线形参数对最小曲线半径(最大曲率)的控制更为精确,有利于灵活安排线路,控制建设投资;高速铁路线路线形至少应满足G2几何连续,二维设计方式会导致曲线要素变化处出现几何连续性衰减,由G2衰减至G1或者更低,且难以通过修改二维参数的方式实现高阶连续。从三维角度的分析在根本上揭示了平、纵分离设计的弊端:二维线形设计方式中的参数繁杂,且对空间线形的影响互不独立,从而导致二维设计方式难以对曲率、挠率、曲线连续性等线形关键参数进行精确控制,因此容易造成设计错漏。
  (3)建立了三维线形设计框架,对比了三维曲线设计常用方法的优缺点,发现常用三维曲线在曲挠率控制、直线段的生成、二次曲线的生成、线形优化等方面对于高速铁路线形设计存在不足,因此根据高速铁路对线形几何特征和列车运行特性的要求,提出了考虑非几何因素的三维线形设计方法,以设计人员在三维空间中布设的控制点为基础进行空间曲线的求解。首先,提出了广义密切平面的概念,建立了适用于高速铁路线形设计的三维曲线空间特征表达方法,随后建立正态模糊分布惩罚函数,联合动态规划算法将控制点按空间特征进行分组、拟合计算,然后通过一阶逻辑推理对线形进行合规性、高阶连续性检查、优化,最终得到一条由高质量线形单元主导的高速铁路中心线。研究表明,高速铁路线形设计不应只考虑线形的几何因素,而应该重点关注于线形的设计约束条件及列车运行时的运动特性,为线路曲线选定合理的参数,包括曲率、挠率、线形连续性、曲线搭配组合,仅考虑曲线的几何性质并不足以完成高质量的线形设计。
  (4)研究了CPU-GPU协同的线路三维快速建模方法。提出了“CPU离散—GPU建模”的线路模型绘制算法:CPU进行线路中线的离散化操作,计算离散中线的边界条件、部件空间位置姿态等数据,直接向GPU传送极为简单的离散化属性数据包,CPU及内存只需管理及保存极少的线路属性数据。该方法建模耗时仅为传统方法的0.55%~1.3%,可有效降低内存及CPU占用率等性能指标,释放设计平台计算压力及提高设计效率。
  本文研究成果为改善传统平、纵分离设计曲线的设计质量提供了新的视角,为高速、更高速铁路线路的三维线形设计提供了新的理论支持,为后续铁路三维线形设计平台系统的研发提供了实践基础与理论依据。
其他文献
学位
色谱技术的高速发展,离不开性能优异色谱柱的研发。开管柱因其具有高柱效和低背压等优势一直受到人们广泛关注。多孔层开管柱能有效克服柱容量低缺陷,尤其是硅基多孔层开管毛细管柱,因其具有大比表面积、高机械强度和抗溶剂性得到了快速发展。目前,窄径硅基多孔层开管毛细管柱理论塔板数可高达上百万,在色谱分析方面已经取得了巨大成功。然而,对于低压分离、微型固相萃取和固定化酶反应器等领域同样具有重要意义的宽径多孔层开
聚氨酯是一种由软段和硬段交替相连的合成高分子材料。内聚能不同的软段与硬段在热力学不相容的驱动下形成了聚氨酯的特征微相分离结构。硬段自组装形成硬段微区均匀分散在软段的海洋中。受氢键超分子作用控制的硬段微区对聚氨酯基体相起到了纳微增强和物理交联的作用,使它表现出优异的综合性能,广泛应用于弹性体、涂料和粘合剂等领域。氢键化作用受温度升高衰减较快的特点使聚氨酯的力学性能表现出随使用温度的增加而迅速衰减的缺
该文首先采用水解沉淀法,以SnCl.5HO为主要原料,制备了纳米级的SnO晶体粉末,并以其对有机磷农药2,2二氯乙烯基二甲基磷酸酯(商品名敌敌畏,简写为DDVP)的降解率作为衡量光催化性的标准, 对其制备条件进行了优化,得到了光催化活性较好的催化剂样品,并用IR、XRD、SEM、TEM和BET比表面积测定等手段对样品进行了表征,结果表明:SnO晶体粉末比表面积较大, 具有一定的光催化活性;然后采用
该研究探索了一条低成本合成高性能TiC-AlO/Fe复合材料的新途径,以天然矿物钛铁矿(FeTiO)、铝粉和石墨为主要原料,采用自蔓延高温合成技术,原位铝热碳热还原法,合成TiC-AlO/Fe复合材料,进一步采用热压烧结技术,避免了颗粒的界面污染,改善了界面的结合性,获得了性能优良的TiC-AlO/Fe复合材料.对反应的热力学过程进行了理论分析和实验研究,探讨了合成TiC-AlO/Fe的反应动力学
学位
鲕状赤铁矿在我国储量大、分布广,由于该类铁矿石结构复杂,至今一直未能得到开发利用。在过去的几年里,国内对铁矿石的需求持续攀升,铁矿石资源很大程度上依赖进口,因此探索合理选别鲕状赤铁矿的选矿技术对于缓解我国铁矿石供需紧张的局势具有十分重要的意义。  工艺矿物学研究表明:鄂西鲕状赤铁矿为沉积型铁矿,含泥质组分通常较多,而且铁矿物嵌布粒度微细,在20微米以下才能达到单体解离;赤铁矿与脉石矿物石英、方解石
学位
城市轨道交通以其准点、大运量、低碳环保的特点迅速发展成为城市的主要交通方式。城市轨道交通网络遭受运输事故、自然灾害、恐怖袭击导致站点失效时,会破坏城市轨道交通的网络结构、降低网络的运输能力,进而导致网络的出行效率降低和乘客出行服务水平下降。当事故发生后,城市轨道交通网络维持原有运输效率、满足原有客运需求、维持一定的客运服务水平的能力,即是城市轨道交通网络的结构抗毁性和功能抗毁性。  本文运用复杂网
本文从宏观视角对城市道路交通的日均速度进行了预测推演研究。研究对象是集计的基于网约车大数据的城市宏观行程速度,该数据是北京市六环内的城市道路日均速度,宏观意义上具有较高的研究价值。  目前在交通流预测领域有很多研究方法,但是综合来看,研究的重点都是局部的交通状态,缺乏对交通流宏观状态的研究。本文以城市宏观行程速度为研究基础,将其看作一个时间序列并进行分解,发现数据中存在着有趣的季节性特征和趋势特征
目前城市局部区域重大突发事故频发,给城市居民安全造成了很大的威胁。针对危险品泄漏、爆炸引发的火灾、核泄漏等重大城市隐患,急需研制一套有效的疏散方法。交通流分配模型、多目标优化模型、数学建模分析、计算机仿真等,常用来研究疏散问题,采用信号控制的车辆疏散多是利用信号配时参数优化、路径规划等思路。针对车辆通过交叉口时不同流向组合的研究并不多。而突发事故场景下,车辆作为城市较大范围受影响时的主要疏散对象,
在我国,大货车道路交通事故经常发生且造成后果比较严重,如果可以对大货车常走的路线发生事故的概率进行预测,从而后续进行管控可以有效降低大货车道路交通事故发生的概率,对提高道路安全、减小事故后果损失具有重大意义。而多种实时交通流数据的采集手段也使得交通事故短时预警变得可行。本文基于大货车高频次行驶路线的实时交通流数据和历史事故数据,分别基于BP神经网络算法、支持向量机以及随机森林算法构建了大货车高频次