论文部分内容阅读
NURBS(非均匀有理B样条)曲线曲面和有理三角Bézier曲面是几何设计与造型中的常用工具。其中,B样条函数的多重乘积理论,NURBS曲线曲面曲率单调变化的条件和导矢界的估计,以及有理三角Bézier曲面的多项式三角Bézier曲面逼近,由于直接关系到计算机辅助设计系统的形状控制、绘制效率、算法的有效性、数据的交换和传递等而成为当前的研究热点,然而它们迄今未取得突破性的进展。本文围绕这些问题展开了深入的研究,取得了以下丰富的创新性理论成果:第一,创造了B样条函数的多重乘积理论,将B样条函数的多重乘积转化为B样条基函数的线性组合。借助于离散B样条理论,对样条空间的变换进行严谨细致的分析,求得B样条函数之乘积的阶数公式和节点向量公式,推广Marsden恒等式,给出了n(n≥2)个B样条函数的乘积表示为B样条基函数线性组合的各项系数的表达式,从而得到了n(n≥2)个B样条函数化积为和的公式,可直接应用于系统开发的软件。多重B样条函数乘积理论的创立,提高了设计系统的功能,丰富了NURBS曲线曲面的理论,推动了NURBS曲线曲面在计算机辅助设计中更为广泛的应用。第二,给出了NURBS曲线曲率单调变化的条件。借助于三个B样条函数化积为和的公式,对工程中最常用的平面有理均匀三次B样条曲线段,将其曲率单调变化的判别式转化为高次B样条函数的表达式,应用B样条基函数的正单位分解性质,得到了此曲线段为曲率单调变化的一个充分条件。该结果新颖、简易、实用,对曲线优化设计具有明显的应用价值,尤其对曲线的光顺性处理具有重要意义。第三,对NURBS曲线曲面的导矢界进行了估计。利用离散B样条理论、齐次坐标点之间Cartesian向量的方向函数Dir、以及B样条函数化积为和的公式,给出了平面有理均匀B样条的倍式化速端曲线表示,导出了该类曲线导矢大小的界。作为以上结果的应用,进一步给出了平面有理均匀B样条曲线上任意两点间参数距离的一个上界。同时基于一些恒等式和不等式技巧,推导了节点向量更为复杂的NURBS曲线导矢大小的界。基于曲面是一条曲线在空间运动的轨迹的思想,最终得到了NURBS曲面导矢的上界公式。NURBS曲面导矢界的研究,有助于提高NURBS曲面各种算法的有效性,并填补了国际上这一工作的空白。第四,创新地研究了用多项式三角Bézier曲面逼近有理三角Bézier曲面的简单而又确保逼近收敛的新算法。将被逼近的有理三角Bézier曲面升阶,以升阶后的有理曲面的控制顶点作为新顶点,产生一张与升阶曲面同次数的多项式三角Bézier曲面。借助于不等式技巧,巧用无穷小的分析技术,证明了当升阶次数趋于无穷时,得到的一系列多项式三角Bézier曲面逼近于原有理三角Bézier曲面。特别地,逼近曲面任意给定阶的导向量一致收敛于被逼近的原有理三角Bézier曲面的同阶导向量。此算法克服了有理多项式曲线曲面的Hybrid逼近算法所存在的表达式繁琐,逼近的收敛性不能保证等缺点,因而具有理论意义及实用价值,进一步提升了几何设计系统的功能。