B4GALT4调控PLK1和RHAMM表达促进HCC微管纺锤体组装

来源 :吉林大学 | 被引量 : 0次 | 上传用户:liongliong508
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
背景:蛋白糖基化是一种调节细胞功能的常见且重要的翻译后修饰,研究证明糖基化异常是癌症的标志性特征。Beta 1,4-半乳糖基转移酶(B4GALT)家族成员参与多种促进癌症发展的生物学过程,包括调节癌细胞增殖和凋亡的动态网络,并与肿瘤转移密切相关。然而,B4GALTs在肝癌细胞(HCC)中的表达和病理机制仍不清楚。领域内已有一些针对B4GALT家族糖基转移酶的研究,但目前只有少数研究强调了B4GALT4的重要性。B4GALT4在硫酸角质素短链(Keratan Sulfate,KS)合成过程中发挥着不可或缺的作用,并强烈暗示异常B4GALT4表达是对含有KS修饰的蛋白多糖(例如lumican、fibromodulin、CD44)表达丰度影响的潜在因素。目的:本研究系统的探索了B4GALTs在HCC相对正常组织中表达水平的变化,并对B4GALTs在HCC中的预后价值进行全面的评估。明确B4GALTs在HCC中所影响的主要信号通路,并进一步阐明B4GALT4参与调控HCC细胞微管纺锤体组装的分子机制。方法:(1)通过对多个平台公共数据库的组合研究,筛选出在肿瘤组织表达水平发生显著变化的B4GALTs;(2)基于机器学习的算法结合已知肝癌标志物,通过B4GALTs的表达水平,建立风险评分模型,并对模型的预后价值进行评估;(3)通过GO,GSEA基因通路富集分析,阐明B4GALTs主要影响的信号通路,并利用基因表达的相关性分析及单细胞测序数据的验证,揭示发挥主要作用的B4GALT;(4)利用WB等生化实验,研究B4GALT参与调控的细胞信号通路的激活情况,阐明下游分子机制。结果:(1)B4GALT家族成员的表达在肿瘤组织中上调;(2)并且与HCC患者的较差预后显著相关;(3)细胞微管和纺锤体组装是HCC中B4GALT家族成员影响的主要信号通路;(4)敲低B4GALT4下调了lumican的表达,并通过调节TGF-beta通路抑制PLK1和RHAMM的表达。结论:B4GALT家族成员在HCC中发挥着至关重要的作用,B4GALT4是促进HCC病理进展的重要因子和HCC的重要预后标志物。本研究将为补充和完善B4GALT4的生物学功能研究,以及HCC患者的早期诊断与治疗策略做出贡献。
其他文献
天然酶是具有高度专一性和高效催化活性的传统生物催化剂,广泛应用于食品加工、环境监测、医疗检测等领域,但天然酶的固有局限(易于变性,成本高,制备费力和回收困难)限制了其更广泛的应用。自1950年代以来,研究人员构建出了高度稳定、低成本的人工酶,旨在使用替代材料模仿天然酶。纳米酶作为一种新型人工酶,因其与天然酶和常规人工酶相比具有明显的优势(高催化活性、造价低廉、易于大规模生产),在过去二十年中引起了
学位
铁死亡是一种具有铁依赖性的新型程序性细胞死亡模式。其特征表现在于细胞内谷胱甘肽依赖的抗氧化系统的失活以及脂质过氧化物的大量蓄积。目前研究表明铁死亡与众多严重威胁人类生命健康的疾病的发生发展密切相关。因此,阐明铁死亡发生发展过程中的分子机制,寻找其潜在的作用靶点将会对铁死亡相关疾病的诊疗提供新的应对思路。谷胱甘肽过氧化物酶4(Glutathione Peroxidase 4,GPX4)是一种抗氧化酶
学位
雄性特异性致死复合物(Male-specific lethal complex,MSL)最初在果蝇的剂量补偿研究中被发现,在细胞中可以特异性地乙酰基化组蛋白H4K16位点。果蝇和哺乳动物细胞中的MSL复合物的主要成分高度保守。近年来,越来越多的研究证实MSL复合物与多种肿瘤的发生发展密切相关。MSL2(Male-specific lethal 2)是MSL复合物中唯一具有RING finger结构
学位
随着人类活动的增加,环境污染不断加剧,生物修复因其低成本、低能耗、对环境友好等优点而成为环境修复的首选方法。地球表面的大部分区域为低温环境,但低温环境生物修复普遍存在效率低、周期长、能耗和成本高等问题,是环境保护领域的世界性难题。适冷酶因其较低的最适催化温度、高催化效率和热不稳定性等固有特性而成为低温环境生物修复的宝贵工具。本课题组前期发现并报道了一种新的具有适冷活性的2,4-二氯苯酚羟化酶Tfd
学位
目前,治疗癌症的手段主要包括手术、化学疗法和放射疗法等,对于手术治疗,通常无法彻底清除癌细胞,而化疗与放疗又普遍具有毒副作用较强、药物剂量需求大以及治疗周期长等弊端。近年来,纳米材料因其具有表面效应、尺寸效应等优势在癌症的靶向治疗和药物递送载体方面受到广泛的关注,为了发挥纳米材料自身的特点,复合型纳米材料的多功能联用已经成为研究热点。基于此,本论文拟利用具有光热转化能力的纳米材料,通过局部升高温度
学位
急性髓系白血病(Acute myeloid leukemia,AML)是指髓系造血细胞发生恶性增殖所引起的疾病,具有高度的异质性。在AML患者中,大约有三分之一的患者携带有FMS样酪氨酸激酶3(FMS-like tyrosine kinase 3,FLT3)突变,其中25%的患者是FLT3内部串联重复突变(FLT3-internal tandem duplications,FLT3-ITD),5%
学位
丝氨酸蛋白酶是一种以丝氨酸残基为催化活性中心的蛋白酶,在His-Ser-Asp催化三联体的作用下,可以催化肽键的断裂。丝氨酸蛋白酶是蛋白酶家族中研究最多、应用最广的一类酶,在工业酶领域占有最大的市场份额。来源于嗜热菌Thermus thermophilus HB8中的嗜热蛋白酶Tth0724已成功在大肠杆菌中表达,但其多以包涵体形式存在且大量表达后易导致菌体自溶。要想实现工业化应用必须解决Tth0
学位
“双碳”背景下天然气裂解制氢越来越受到重视,有望成为未来天然气达峰后继续发挥天然气产业基础设施优势、与新能源融合发展的重要方向。国内外对天然气裂解制氢的研究集中在固定床催化裂解制氢技术方向,但面临催化剂积炭失活、生产不连续和工程化放大困难等问题,难以实现工业化。一种新型熔融金属天然气裂解制氢技术有望能够解决这些难题,使规模化天然气催化裂解成为可能。总结了目前天然气催化裂解制氢的研究现状,从技术原理
期刊
随着对肿瘤分子生物学及相关学科的深入研究,分子靶向药物在肿瘤的临床治疗中发挥着越来越重要的作用。区别于选择性差、毒副作用大、易产生耐药性等传统细胞毒性药物,靶向抗肿瘤药物针对正常细胞和肿瘤细胞间的差异,可以达到高选择性、低副作用的治疗效果。因此,开发选择性杀死或抑制肿瘤细胞的抗癌药物已成为肿瘤研究领域的重要目标。相对于正常细胞来说,过度旺盛的新陈代谢导致癌细胞内积累大量活性氧自由基(Reactiv
学位
血栓导致的缺血性心血管疾病是全球发病率和死亡率最高的疾病之一。抗血小板聚集药物是预防和治疗血栓形成和卒中事件使用最广泛的药物。氯吡格雷联合阿司匹林的抗血小板治疗是治疗动脉血栓的“金标准”,然而氯吡格雷发挥药效转化为活性代谢产物的利用效率非常低,只有不到1%会发挥作用,并且由于氯吡格雷生物利用度低,个体的基因多态性和药物与药物之间的相互作用等会导致产生“氯吡格雷抵抗”现象,因此基于氯吡格雷结构基础上
学位