论文部分内容阅读
卫星总体设计属于典型的多学科问题。以多学科设计优化(MultidisciplinaryDesign Optimization,MDO)方法为核心实现设计优化与过程集成,对于提高卫星总体设计水平,实现卫星研制“快、好、省”的目标具有重要意义。论文以探索MDO方法与卫星总体设计过程相结合为目的,在系统研究MDO理论的基础上,建立了以分解、协调、搜索策略和MDO优化过程为核心的MDO理论研究主线,并将其应用于月球探测卫星和InSAR(Interferometric Synthetic Aperture Radar)卫星编队两类典型卫星总体优化设计问题。在MDO理论研究方面:首先,研究了基于图论的函数关系矩阵(Functional Dependency Table,FDT)与设计结构矩阵(Design Structure Matrix,DSM)分解策略,分析了基于超图的FDT分解模型和基于图论的DSM分解模型。算例测试结果表明:合理的学科分解有助于MDO问题快速准确地求解。其次,提出了基于改进Kriging模型的响应面协调策略。该策略遵循变复杂度建模思想,结合了二次多项式模型和Kriging模型的优势。三个不同复杂度的算例测试结果表明:该策略可明显提高响应面的近似精度和计算效率,并改善基于响应面方法的MDO优化过程的收敛性能。然后,研究了基于微粒群算法的设计空间搜索策略,提出了改进的微粒群算法(Improved Particle Swarm Optimization,IPSO)以及集成Powell法、模式搜索法与IPSO的混合微粒群算法。典型全局优化函数测试结果表明:两种改进算法在全局收敛性能和计算效率方面均有明显优势。最后,提出了针对BLISS 2000(Bi-Level Integrated System Synthesis 2000)优化过程的改进形式——HBLISS(Hybrid BLISS 2000)。HBLISS集成了基于改进Kriging模型的响应面协调策略和基于混合微粒群算法的搜索策略,并利用HLA/RTI(High Level Architecture/Runtime Infrastructure)实现了并行。算例测试结果表明:HBLISS在学科自治性和收敛性能方面较有优势,其并行实现可显著缩短计算时间。在MDO应用方面:首先,探讨了基于MDO的卫星总体设计过程的建模问题,深入分析了卫星总体设计过程中的总体技术流程、总体方案流程及其模型体系,提出了模型树与方案树的概念,建立了卫星总体MDO的基本框架。其次,综合上述研究成果,研究了月球探测卫星的MDO问题。针对此类以继承性设计为主的卫星总体设计问题,以单位信息量的成本最小为优化目标建立了总体参数优化模型,经合理学科分解后采用HBLISS进行集成和求解。优化结果较好地验证了HBLISS的可行性与有效性,并给出了较优的总体设计方案。然后,研究了InSAR卫星编队的MDO问题。针对此类以创新性设计为主的卫星总体设计问题,以全球高程测量为背景,分析了编队构形、SAR天线及卫星平台总体参数间的耦合关系,以系统成本最小为目标构建总体参数优化模型,在合理学科分解的基础上利用并行HBLISS进行集成和求解。结果较好地体现了MDO方法的优越性,并为进一步的设计奠定了较好基础。最后,在以上应用实例的基础上,建立了面向卫星总体的多学科集成设计系统,用于概念设计和初步设计阶段的卫星总体多学科设计、分析与优化。针对数字化设计系统的发展需求,提出了基于本软件系统构建卫星数字化集成设计系统的构想。总之,论文研究初步形成了比较完整的MDO理论研究主线,并将其应用于月球探测卫星和InSAR卫星编队的总体优化设计,为探索MDO方法在卫星总体设计中的应用进行了有益的尝试,也为进一步的MDO理论与应用研究奠定了良好的基础。