【摘 要】
:
在当今全球经济飞速发展的背景之下,国际间的贸易往来日益增加,海上交通也愈发复杂。海洋中船舶数量的增加以及水域交通越发的复杂,海事部门对于船舶的监管的力度也随之更加严格,因此加强海上交通的管理变得十分的重要。本文将数量庞大的AIS海事数据进行解析和存储,并通过挖掘和分析大量的数据,获得特定海域内的船舶运动密集区域,为未来的海上航道构建、船舶路径规划提供辅助的依据与帮助,并通过AIS数据识别可能存在异
论文部分内容阅读
在当今全球经济飞速发展的背景之下,国际间的贸易往来日益增加,海上交通也愈发复杂。海洋中船舶数量的增加以及水域交通越发的复杂,海事部门对于船舶的监管的力度也随之更加严格,因此加强海上交通的管理变得十分的重要。本文将数量庞大的AIS海事数据进行解析和存储,并通过挖掘和分析大量的数据,获得特定海域内的船舶运动密集区域,为未来的海上航道构建、船舶路径规划提供辅助的依据与帮助,并通过AIS数据识别可能存在异常行为的船舶,进而提升海事监管能力与效率。论文通过分析国内外轨迹聚类、轨迹相似度判别等方向的发展现状,发掘目前AIS报文应用以及聚类模型可以优化的方向,结合现有主流大数据和机器学习的技术进行改良。基于流式计算技术提出新型的AIS报文解析框架,并通过实验进行验证,为后续实验提供数据支持。针对聚类模型优化问题,本文对于密度聚类参数设定问题进行研究,提出一种参数自适应的方法,避免了工作人员过多人为干预模型参数设定的问题。通过改进的轨迹压缩算法提高聚类框架整体的性能,并通过聚类实验分析挖掘特定海域内船舶运动密集区域,并进行船舶数据异常甄别,对于可能存在异常行为的船舶数据进行记录,对于海事监管以及主航道规划进行数据支持。
其他文献
党的十九届五中全会审议通过的《中共中央关于制定国民经济和社会发展第十四个五年规划和2035年远景目标的建议》明确提出"统筹发展和安全,建设更高水平的平安中国"。监狱作为刑罚执行机关,是司法行政工作的重要组成部分,在全面依法治国历史进程中发挥着不可替代的重要作用,从把握新发展阶段、贯彻新发展理念、构建新发展格局实际出发,不断推进监管改造工作高质量发展对教育改造罪犯、维护社会和谐稳定、建设更高水平的平
随着车联网应用的快速发展,越来越多的数据产生,如何在车联网中进行有效的内容分发,来满足用户的服务质量要求成了智能汽车及自动驾驶领域的行业痛点之一。为了解决这一问题,车辆边缘网络被提出,它将移动边缘计算(MEC)集成到车辆网络中,把计算和存储资源下沉到靠近车辆节点的网络边缘,从而为执行资源密集型应用程序蓄力,来降低联网车辆的通信代价。但是由于部署路边单元(RSU)等基础设施带来的巨大成本和RSU本身
优先级最短路径又被称为最优路径,是网络模型优化方面的基本研究问题之一,也是热门的研究问题之一。多年来在网络模型优化研究方面已经产生了很多研究成果,但是在航天卫星之间的通信、物品的运输、智能机器人的路径规划和智能规划交通路线等生活实际应用方面发现了许多新的问题。这些新问题对最优路径问题的研究提出了新挑战与新需求,在此情况下也出现了许多的独特的解法。本篇论文基于神经网络框架的模型求解方法,主要研究静态
本文以锂离子电池为研究对象进行了以下研究:(1)建立了锂离子电池二阶RC等效模型。然后基于三星INR18650-30Q锂离子电池开展了脉冲放电实验,基于实验数据确定了OCV-SOC关系曲线并对电池模型中的参数进行了离线辨识。最后MATLAB仿真结果显示,二阶RC等效模型输出端电压误差在-0.026V~0.057V以内,验证了模型参数辨识结果的有效性。(2)对粒子滤波(PF)SOC估计算法进行了详细
二氧化碳的过量排放所带来的温室效应,是当前影响人类经济与社会可持续发展的主要问题。随着温室气体对全球气候和环境带来日益严重的影响,关于二氧化碳的减排与转化再利用已成为当前环保与能源研究领域的科研热门话题。由于CO2还原与有机物氧化反应本身的复杂性以及他们在同一催化剂上存在相互干扰,将使得CO2还原与有机物氧化结合成为一项极具挑战性的课题。本研究以水溶性β-环糊精修饰的Cd S纳米晶(Cd S-CD
在市场经济不断发展的过程中,企业所面临的市场竞争压力越来越大,经营与发展过程中面临的挑战也越来越严峻。为保障企业在复杂的经济环境中能够获得健康持续发展,不断提升自身的竞争优势,进而保障企业经济效益的最大化,就需要不断强化企业的内部管理工作,使企业的内控能力逐渐增强。全面预算管理和绩效评价使企业内部管理工作中的重要内容,对企业内控水平的提升有着重要的影响。基于此,文章主要围绕如何更好地加强企业全面预
碳化硅(SiC)金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)作为第三代宽禁带半导体器件凭借其开关速度快、功率密度高和耐压等级高等优点而被广泛应用在航空航天、轨道交通、电动汽车和新能源发电等领域。功率器件在电力电子装置中承担着电能变换与控制的重要任务,故其高可靠性是保证电力电子装置高效和安全运行的先
能源是人类社会发展的三大支柱之一,是社会持续不断发展的动力。煤、石油和天然气等化石能源的广泛使用极大地提高了人们的生活水平。然而,化石能源的大量使用也引发了一系列问题如:环境污染与气候变化等。此外,化石能源的不可再生性也引发了人们对未来能源枯竭的担忧。为了解决上述人类社会发展所面临的能源和环境问题,开发清洁、可再生能源成为全球研究热点。太阳能作为一种极为丰富的清洁能源有望替代化石能源来满足人类的能
ZnSe晶体是最重要的宽禁带Ⅱ-Ⅵ化合物半导体光电材料之一,在中远红外激光、高能辐射探测、蓝光LED、光通讯等领域有广阔的应用潜力和价值。然而,由于高熔点和高蒸气压,ZnSe晶体生长过程中易出现孪晶、位错、晶界、组分不均匀等缺陷,严重限制高质量ZnSe晶体的获得。基于此,本文采用兼具低温溶剂和区熔特性的移动加热器法(THM)生长ZnSe晶体,系统研究了THM生长ZnSe晶体的生长机理和控制技术、结
轨道角动量(Orbital Angular Momentum,OAM)模式因其奇特的光学特性,在光纤通信领域具有重要的研究价值。与普通光纤模式不同,OAM模式在传输过程中易受干扰,需要设计特殊的光纤结构以保证OAM模式的长距离稳定传输。传统的光纤设计方法非常依赖研究人员的经验,需要逐步摸索光学结构和特性之间潜在的规律和联系,并通过反复调整优化参数。设计过程中伴随大量重复冗余的工作,并且难以获得具有