共轭置换与有限群结构

来源 :河南师范大学 | 被引量 : 0次 | 上传用户:bitgxd
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文结合有限群G的某些特殊子群(如Sylow子群,极大子群以及Sylow子群的极大子群)的共轭置换性,半正规性及C-正规性来讨论有限群的结构.我们共讨论了三类问题,主要内容如下:  第一类,讨论了因子群的Sylow子群的R-共轭置换性对有限群结构的影响.即设G为有限群,A,B以及R为G的子群且满足G=AB.根据R-共轭置换子群的概念,我们研究了G的幂零性与A,B的Sylow子群的R-共轭置换性之间的关系.  第二类,讨论了极大子群(2-极大子群)共轭置换性、半正规性与有限群结构的关系.即结合共轭置换子群与半正规子群的概念,当群G的极大子群(2-极大子群)或共轭置换或半正规时,本文研究了这一条件与群G的超可解性之间的关系.  第三类,综合Sylow子群及极大子群的研究,我们讨论了Sylow子群的极大子群的共轭置换性与有限群结构的关系.即结合共轭置换子群与半正规子群(C-正规子群)的概念,本文研究了群G的Sylow子群的极大子群或共轭置换或半正规(C-正规)这一条件与群G的超可解性之间的关系.
其他文献
目前,对正交表行关系的研究,已经提出了许多的开问题,其中之一就是哪些正交表按行的关系可以形成结合方案及如何分类.目前不乏许多讨论由Kronecker和构造出的一些正交表的可图示
本文利用非线性泛函分析中的拓扑度方法与临界点理论,主要研究了两类十分重要的非线性常微分方程共轭边值问题解的存在性与多重性,得到了新的结论。同时,也改进了以往的一些结果
B样条曲线曲面是众多计算机辅助设计(CAD)系统中形状描述的基本工具,它在各CAD系统中的数据存储、误差表示和数据交换,一直是计算机辅助几何设计(CAGD)研究的重要内容。本文对B
设F是一个域,只是只含有两个元素的域,F’为F中去掉0、1所得集合,M。(F)为F上全矩阵代数。 f为M(F)上的线性映射,若对任意一个可逆矩阵A∈M(F),都有f(A)可逆且f(A)=f(A),则称厂
仿射跳跃离散模型的随机微分方程不能产生直接模拟的精确结果,在这个模型下离散的办法可用来模拟股票价格,但是离散使模拟结果产生误差,且需要大量的时间步去减少误差到一个可以
本论文的主要研究对象是几类无向图上或有向图上的离散动力系统。首先我们介绍无向图上的贯序动力系统(SDS)的概念,它由以下几个要素构成:(1)一个有限的,用1,2,……,n顶点标号的