论文部分内容阅读
轴承是旋转机械设备的关键部件,其可靠性对设备的安全运行至关重要。随着现代工业技术的发展,机械设备中轴承的工作条件越来越苛刻,发生故障的概率越来越大。从历史统计数据来看,轴承是旋转机械发生故障概率最大的部件之一,因此对轴承的故障诊断方法研究具有十分重要的意义。符号化时间序列分析是由符号动力学理论、混沌时间序列分析和信息理论发展起来的一种新的信号分析方法,经过近十几年的迅速发展已经逐渐成熟。将符号化时间序列分析引入到轴承的故障诊断当中,可以为轴承故障诊断提供一种新的解决思路。本文着重研究基于符号概率有限状态机特征提取的轴承智能诊断算法,主要工作和研究成果归纳如下:(1)介绍了符号化时间序列分析的基本理论,在对之前符号化方法总结分析的基础上,提出了一种高效实用的符号化方法:基于概率密度相空间划分的符号化方法。在该方法中,首先对时间序列进行概率密度统计分析,进而确定若干个概率相等的区间,然后对属于特定区间的值赋予一个特定的符号,这样就把原始时间序列转化成了符号时间序列。为了检验该方法的效果,将基于概率密度空间划分的符号化时间序列分析方法用于轴承疲劳实验的异常诊断当中。通过对比实验表明,概率密度符号化方法与传统的空间划分方法相比对异常更加敏感,能够更早的诊断出轴承状态的异常变化。(2)将符号化概率有限状态机扩展到二维空间上,提出了一种基于短时傅里叶变换的二维符号概率有限状态机特征提取方法。相比传统的方法在两个方面做了补充和改进:首先,使用短时傅里叶变换系数代替小波系数作为符号概率有限状态机的输入。其次,对有限状态机中的状态矩阵确定方法进行了改进,提出了一种忽略矩形框中符号排列而只考虑符号分布的策略来对状态进行压缩的方法,这一改进提高了该特征提取方法的计算效率。(3)传统的K-最近邻分类算法,随着训练样本数量增加所需的存储空间与计算时间将大大增长。针对上述局限性提出了一种基于K-means聚类改进的K-最近邻分类算法。该改进算法,首先使用K-means对训练集进行聚类分析,使各类训练样本数量得到压缩,然后使用K个最近压缩样本对未知类型样本进行分类。这一改进提高了算法的计算效率、并避免了样本数量分布不均衡对分类的影响。(4)给出了基于符号化时间序列分析的轴承智能故障诊断方法,并对实际轴承故障信号进行分类诊断。共进行了轴承内圈、球体、外圈三类故障损伤程度的检测,三组实验平均分类正确率为99.00%、92.33%、99.92%,均表现了较高的识别率。为了验证对K-最近邻算法改进的有效性,同时进行了传统K-最近邻算法的对比实验,实验表明本文提出的改进方法,在保证轴承故障诊断效果同时提高了其计算效率并降低了所需存储空间。