论文部分内容阅读
分数阶微积分作为传统微积分在其微分或积分阶次上的一个延伸与推广,在对相当一部分复杂系统的建模上有着更准确、更简洁的优势。随着人们对被控系统建模精度、控制性能要求的逐步提高,分数阶系统理论以及分数阶控制器设计在近些年来得到了快速发展。研究证明,分数阶控制手段可以增加系统控制器参数调节的自由度,有利于进一步改善被控系统的相关性能,目前已成为分数阶系统领域的研究热点之一。然而,实际系统的前期建模与后期运行中,总是不可避免地存在建模参数的不确定性与环境变化、元器件老化等因素带来的内部或外部扰动。这些不确定因素使得基于精确数学模型所设计的控制器性能大大降低,所以研究不确定系统的分数阶鲁棒控制问题对分数阶控制理论及工程实践有着重要意义。频域分析作为系统鲁棒性能分析的一种方法,已经在鲁棒控制器设计及参数调节中取得了较多成果。然而目前分数阶鲁棒控制器设计的相关结论在面对复杂的、多参数扰动的被控系统时,还存在着诸多困难和挑战。不同于整数阶系统,分数阶系统的非整数阶次对系统动态性能的影响是较为复杂的。一方面,分数阶系统理论的研究还未完善,部分已在整数阶系统中较为成熟的控制策略在分数阶系统中仍处于空白状态。另一方面,分数阶系统的稳定性、鲁棒性等性能约束在频域上常表现为高度非线性的方程组,且计算量大,难以通过传统方法求解。同时,现有框架下的鲁棒控制策略仍无法解决一些系统性能指标之间的固有矛盾,无法最大限度提升系统的控制性能。这些不足之处限制了分数阶鲁棒控制的进一步发展。因此,本文将充分考虑复杂系统的鲁棒控制与性能改善问题,借助线性分数阶系统频域分析方法以及非线性分数阶系统的时域估值与补偿方法,研究复杂系统的分数阶鲁棒控制策略与鲁棒控制器的设计。首先,本文针对高阶次的、同时存在多个时间常数及增益扰动的整数阶线性系统设计了分数阶的鲁棒PIλDμ控制器。考虑具有复杂传递函数的高阶系统,在复平面上对系统的开环频域响应表达式作了统一化处理。对于扰动参数较少的情况,利用频域鲁棒性条件建立性能指标方程组并对其进行化简处理;而针对多参数扰动情况,利用多个方程之间的化简与解耦,降低方程数目,以避免出现超定方程。同时,充分利用伯德理想传递函数的强鲁棒性,提出了一套有效的控制器参数非线性最优化整定算法。本文验证了闭环控制系统在复杂系统多参数、大范围扰动下的良好响应品质。其次,在伯德理想传递函数的基础上,为了得到系统在频域鲁棒性与时域响应快速性能上的进一步提升,本文首次提出了基于线性控制器设计与非线性负反馈的非线性分数阶控制策略。考虑到常规的鲁棒CRONE控制是一种形式过于简单、无法进一步提升其响应速度的线性控制策略。而非线性负反馈的"小误差大增益、大误差小增益"的特点,系统的鲁棒性并不会因非线性反馈的引入而受到影响,故可以利用非线性反馈方法对具有良好鲁棒性的线性控制策略进行改进。对于非线性分数阶系统的时域暂态响应分析,文中首次提了分数阶微分方程的比较定理。利用该定理,可以十分方便地对非线性分数阶系统的时域响应进行比较与估值。为了消除系统可能存在的抖振现象,本文针对系统的跟踪问题和调节问题,分别提出了基于凹函数与凸函数的非线性非抖振反馈控制框架,并证明了该框架下的控制策略在系统上升时间及鲁棒性上的优越性。最后,考虑到自抗扰控制技术是一类先进的PID算法,一方面它可以通过安排过渡过程有效解决系统的快速性和超调量之间的矛盾,另一方面,扰动补偿的思想可极大提高控制系统的鲁棒性,本文对同元次分数阶系统的分数阶自抗扰控制策略进行了研究。目前的分数阶自抗扰控制框架仅针对单输入单输出(SISO)系统或是可由多个SISO系统组合而成的解耦的多输入多输出(MIMO)系统,难以解决一些复杂的MIMO系统的自抗扰控制问题,例如非解耦的欠驱动系统、并联系统等。一方面,本文考虑了欠驱动分数阶系统的微分平滑特性,针对完全能控的单/多输入分数阶系统,给出了一种形式简单、计算方便的系统平滑输出。对于控制器参数的选取,本文则充分考虑了分数阶次与系统维度的影响,给出了控制器参数存在稳定域的必要条件,并在此基础上提出了基于微分平滑的分数阶自抗扰控制策略。另一方面,对于多个子系统构成的并联系统,本文通过选取合适的状态变量,利用期望系统的动力学特性来构建扰动方程,给出了同元次并联系统的分数阶自抗扰控制策略。