【摘 要】
:
随着仿真系统愈发复杂,以及用户对仿真应用的要求日益提高,仿真系统可信度评估正面临越来越多的挑战。可信度评估是指分析、计算和评价仿真系统可信度程度,并最终判断其是否可信的一系列复杂过程。如何正确地开展仿真可信度评估是当前研究的热点与难点,也是本文研究的重点。国外在可信度评估中引入可接受性标准(Acceptability Criteria,AC)的概念,通过从仿真需求或预期用途中归纳出合适的可接受性标
【基金项目】
:
“十三五预研课题”《装备系统研制仿真可信度评估工具设计与开发》;
论文部分内容阅读
随着仿真系统愈发复杂,以及用户对仿真应用的要求日益提高,仿真系统可信度评估正面临越来越多的挑战。可信度评估是指分析、计算和评价仿真系统可信度程度,并最终判断其是否可信的一系列复杂过程。如何正确地开展仿真可信度评估是当前研究的热点与难点,也是本文研究的重点。国外在可信度评估中引入可接受性标准(Acceptability Criteria,AC)的概念,通过从仿真需求或预期用途中归纳出合适的可接受性标准,来对仿真系统的特定预期应用的满足情况进行确认。本文以制导仿真系统可信度评估为背景,在分析了可接受性标准相关理论的基础上,提出了基于监督学习的特定领域AC自动构建方法。首先基于词典与条件随机场(CRF)的方法从仿真需求文本中抽取出部件、模型及指标项三类实体,在此基础上利用支持向量机(SVM)对实体之间的关系进行抽取,从而完成定性AC的提取工作;同时,提出了基于规则与SVM的属性抽取方法,从仿真需求文本中提取出部件实体的属性及其属性值,从而完成定量AC的提取工作。针对当前仿真系统可信度评估过程的滞后性问题,提出了基于AC的仿真在线评估方法。首先将AC向指标体系进行映射、指标体系向评估流程进行映射,完成指标的分解;其次设计了仿真在线评估流程七元组模型,扩充了指标体系与评估函数两个元组,实现了在线评估的闭环结构,并通过有限自动机模型进行了系统状态迁移的验证,完成了从指标可信度、评估环节可信度到仿真可信度的评估流程自动化推演。为了能在各评估环节中计算环节综合可信度,本文构建了基于最优组合赋权TOPSIS法的仿真系统可信度评估方法,并通过具体的评估实例验证了该可信度评估方法的有效性。本文设计并开发了复杂产品仿真系统可信度评估工具,并根据具体实例的可信度评估过程验证了仿真在线评估方法的实用性与有效性。
其他文献
随着“互联网+”时代的降临,办公自动化系统(OA)在信息与技术的不断演变过程中也在不断完备。如何解决企业项目管理、人员管理以及沟通管理等一系列需求,达到其信息化战略目的,打造一款能集项目、人员、沟通等多方管理一体化协作系统平台具有重大的实际意义。本文将针对某企业协作系统,分别从系统架构、系统功能模块和系统测试等多方面进行设计与实现,并研究基于Lucene的Solr检索算法和基于CB的推荐算法为系统
随着城轨列车技术的发展,地铁成为人们日常生活中不可或缺的交通工具,为保证人们出行安全,地铁的安全性不容忽视。车底状态检测是地铁检测的重要环节之一,但地铁段检、厂检会存在漏检情况。当前国内还没有一套完整的地铁底部复现技术和基于图像自动检测技术,因此本文对地铁底部做了相应的研究。主要工作内容如下:(1)对地铁底部图像拼接与关键部件螺栓检测系统进行总体架构设计,在需求分析的基础上,确定系统架构、系统工作
随着机器视觉的发展与应用,将视觉检测技术运用于工业场景中已经成为智能制造业的热潮。钢水浇筑在生产过程中,存在很多不可控的质量问题,在制造过程中会出现部分划痕、形变等瑕疵,而操作人员需要近距离判断检测浇筑钢爪的合格与否,这样的检测方式效率过低。为此本文分析和应用了基于深度学习的目标检测框架进行训练,实现形态各异、多角度的钢爪识别与检测。论文主要完成以下工作:(1)分析了本文检测目标的实际环境和需求,
近年来,随着高清视频采集设备在生活中的普及,单目相机的数据量得到了迅速的增长。如何处理这些数据,从中获得有价值的信息,是计算机视觉领域的一个重要问题。数据中的人物姿态与行为,因其具有巨大的潜在商业价值,成为研究者重点关注的对象之一。近年来随着深度卷积神经网络在多个计算机视觉任务上取得的突破,行人检测、人体姿态估计、动作识别等与人相关的任务也受到越来越广泛的关注。本文聚焦于单目彩色图像数据中的二维人
情感分析是对文本中表达的评论、情绪和情感进行的计算研究。近几年来,情感分析引起了业界和学术界的广泛关注。在世界各地,社交媒体已为人们提供了以母语共享个人观点的趋势。对于这些评论的情感分析,机器学习算法是研究者的主要选择。在提出了复杂的机器学习算法和硬件升级版本来运行实验之后,研究界开始转向利用深度学习完成情感分析任务。过去五年的背景研究证实,深度神经网络(CNN、RNN和扩展版LSTM)取得了显著
无人机相较于固定监测设备有着价格低廉、部署方便、机动灵活等优势,在智能交通信息采集方面具有广阔的应用前景。为此本文在普通城市道路的复杂路况背景下,以YOLOv3算法为基础,对于航拍视角下车辆目标与跟踪技术进行研究,在降低计算资源、加快速度和增强精度等方面做出针对性改进。在车辆检测方面,为了改善YOLOv3算法在航拍车辆检测上的应用效果,本文提出了YOLOv3-Aerial航拍车辆目标检测算法,对默
惯性约束聚变(Inertial Confinement Fusion,ICF)是一种通过采用高功率激光或离子束辐照氘氚燃料靶丸,在惯性约束情况下达到点火条件,得到大量聚变能的方法。目前中美等国都在从原理性研究向工程化推进,其中每一个细节均需要精雕细琢。靶丸作为关键性部件,表面存在任何凸起、灰尘等孤立缺陷,均可能导致聚变时产生非对称内爆甚至壳体破裂,造成巨大的损失。为实现靶丸全表面缺陷高精度、高效率
在武器系统的日常测试中,需要根据系统中的各类数据对系统的性能做出评价。将武器系统中的各类数据记录下来,按照通信协议进行解析,综合分析解析得到的数据后对系统性能做出评价,或是利用故障参数数据对武器系统进行故障诊断,帮助测试人员快速定位故障位置,有利于武器系统的改进和维护。本文以数据的处理过程为思路,设计完成了数据记录、解析模块,对导弹故障诊断、预测进行仿真,并利用仿真结果完成故障诊断模块的设计与实现
光子计数成像广泛应用于天文成像,夜视成像,医学成像等重要领域。但是,由于硬件设备和成像环境的影响,成像设备采集到的光子数量严重不足,此时,服从Poisson分布的散粒噪声会严重降低成像质量,生成低质量的低光子Poisson图像。在低光子Poisson图像中,图像局部自相似性、图像局部几何的灰度一致性和连续性均受到严重破坏,导致在图像的局部几何结构检测和非局部图像块几何相似性度量中上均存在非常大的误
目前,神经网络和深度学习的理论与方法广泛应用于计算机视觉和目标检测的研究,其研究成果已广泛用于自动驾驶、航空出行、安防等领域。传统的目标检测方法依靠绘制在目标上的矩形,通过水平和垂直边界框来确定目标位置。航空图像中的物体方向随机,密集且周围复杂,因此对传统的物体检测模型构成了挑战。传统的矩形框会忽略物体的方向,从而导致物体定位减少,并且在目标密集情况下重叠的框会限制进一步的处理,例如目标的理解和检