论文部分内容阅读
随着新能源在全球范围内的崛起,我国的新能源发展也十分迅速,新能源和传统能源之间的和谐可持续发展成为值得关注的话题。用于发电的能源占据了能源消耗的重要部分,因此多种能源发电的协同是优化能源结构和促进大规模可再生能源发展的必经之路,是一个值得研究的话题。针对多种能源发电在协同发展中的一些问题,本文在多种能源发电发展现状和协同发展框架分析的基础上对多种能源发电协同发展过程中可再生能源被弃用和发电行业污染气体排放等问题进行探讨,并从多种能源发电协同发展的风险管控、信息管控、大数据分析、仿真分析的角度设计了本课题的研究思路,主要的研究内容和成果如下:(1)在电力和能源行业的当前发展背景下分析了多种能源发电协同发展的模式和框架。系统地分析了协同发展中的参与主体和主要发展瓶颈,从多种发电形式的协同模式、保障机制和发展原则等方面,提出了多种能源发电协同发展的研究结构,为后文的研究内容做铺垫。(2)针对多种能源发电协同发展中可再生能源的弃用风险,建立了风险管控模型。通过发电厂商、电网、政府、社会各方面的利益博弈来计算区域内的整体风险,以期寻求区域内一个风险最低、收益最大的多种能源发电的协同发展模式。然后以我国京津冀地区为例,对降低“弃风率”的风险成本进行计算,得到了该地区在需求不变时增加风电发电量所付出的总体成本和收益。(3)建立了基于系统动力学的多种能源发电协同发展信息管控模型。在构建了各参与主体的信息池的基础上,分析了各主体内部的信息协同和共享关系。从电厂、用户、电网、政府和社会角度对多种能源发电协同过程中涉及的多方信息进行融合,建立了包含多主体的协同发展信息管控模型。将相关数据和政策信息带入模型,分析得到在信息的协同作用下多种能源发电的比例结构变化趋势,不同种类能源发电量对污染气体排放的影响,以及相关政策目标实现的可能性。(4)对多种能源发电中的大数据进行分析,旨在研究协同发展中的规律,更好地对协同发展进行管控。以山西省多种能源的发电数据、用电量数据、污染气体排放数据为例,借助决策树模型、回归分析和聚类分析等大数据挖掘方法,对多种能源发电协同发展进行大数据分析研究,从而得到多种能源发电协同发展中的潜在规律和有价值的信息,为政策的制定提供参考。(5)在上述分析的基础上对多种能源发电协同发展过程进行仿真。本文基于多Agent技术建立起仿真模型,模型中的多种能源发电协同策略是依据我国现行的《节能发电调度办法》对各种发电形式进行调度。仿真中将不同种类机组、不同类型用户、电力调度部门简化为智能体群,通过各智能体间的协调配合完成对协同过程的仿真。然后以山西省为例,得到了该省在协同调度下的各种能源发电比例和污染气体排放量,模拟了山西省传统火电和可再生能源发电以及其他发电形式之间的协同发展过程,仿真结果验证了协同策略的有效性,体现了多种能源发电协同发展的协同效应。本文的研究丰富了多种能源协同发展以及电力结构调整相关理论成果,对于指导多种发电形式的科学和有序发展、管控协同发展风险、提高能源利用效率、大气污染防治等方面都具有实践指导意义。