【摘 要】
:
本文考虑如下具有阻尼项的定常不可压缩Navier-Stokes方程的边值问题:其中Ω为Rn中有界区域,n为空间维数;u=u(x)=(u1(x)…un(x))为未知的向量函数,表示流体的速度场;p=p(x)表示未知的压力函数;f为给定的外力.在阻尼项中,α>0,β≥1是两个常数.φ是u在边界上的取值,并且满足相容性条件(?)·φ=0.γ>0是流体的粘性系数.本文主要研究问题(*1)在空间W1,2(Ω
论文部分内容阅读
本文考虑如下具有阻尼项的定常不可压缩Navier-Stokes方程的边值问题:其中Ω为Rn中有界区域,n为空间维数;u=u(x)=(u1(x)…un(x))为未知的向量函数,表示流体的速度场;p=p(x)表示未知的压力函数;f为给定的外力.在阻尼项中,α>0,β≥1是两个常数.φ是u在边界上的取值,并且满足相容性条件(?)·φ=0.γ>0是流体的粘性系数.本文主要研究问题(*1)在空间W1,2(Ω)中弱解的存在性与唯一性问题.其内容分为如下两部分:1.考虑方程(*1)的齐次问题(即u|(?)Ω=0)在齐次Sobolev空间(?)01,2(Ω)中弱解的存在性与唯一性问题.我们利用Galerkin逼近构造了逼近解,再利用先验估计得到弱解的存在性.最后由正则性理论得到解的唯一性.2.考虑方程(*1)的弱解在空间W1,2(Ω)中的存在性问题.我们先将非齐次问题转化为齐次问题,通过利用齐次问题所得到的弱解存在性结论,推出了非齐次问题在一定条件下的存在性,再由解所满足的正则性条件,得到唯一性.
其他文献
信赖域方法是非线性优化的一类重要的数值计算方法.它在近二十年来受到非线性优化领域许多研究者的关注,是非线性优化的研究热点.与线搜索相比,信赖域有两个突出的优点:一是它有很强的稳定性和强适性,二是它具有很强的收敛性.由于信赖域的有界性,它可以处理非凸的近似模型.目前,信赖域方法已经和传统的线搜索方法并列为求解非线性规划问题的两类主要数值方法[1],与线性搜索方法相比,信赖域算法不仅具有很强的收敛性[
本文主要研究求解无约束优化问题的混合共轭梯度方法.共轭梯度法属共轭方向法的一种.共轭方向法是介于最速下降法与牛顿法之间的一种方法,它仅需要利用一阶导数信息,克服了最速下降法收敛慢的特点,又避免了存储计算牛顿法所需要的二阶导数信息,对正定二次函数的极小化,它具有二次终止性.因此可望对一般的函数有较快的收敛速度.最典型的共轭方向法是共轭梯度法,其基本思想是把共轭性与最速下降法结合,利用已知点处的梯度构
本文考虑如下粘性依赖于密度的一维可压缩Navier-Stokes方程Cauchy问题:其中ρ(x,t)和u(x,t)分别表示流体的密度和速度,γ≥1, (?)≥0为常数.本文主要研究粘性依赖于密度的一维可压缩Navier-Stokes方程Cauchy问题解的时间衰减估计,其内容分为如下两部分。1.考虑当(?)>0时Cauchy问题解的时间衰减估计.我们先得到ρ-(?)和u在L2(R)下的时间衰减估
水团簇广泛应用于工程实际应用中,使得从原子水平上了解水团簇的结构和性质的需求与日俱增,通过理论计算和实验手段研究水分子团簇,帮助研究者们了解水团簇的微观结构,同时也为建立水分子体系模型打下了坚实的基础。碱金属氯化物的热力学性质和结构是熔盐理论的重要组成部分,研究熔盐的热力学性质对理论研究具有指导意义。本文是在NVT正则系综和三维周期性边界条件下,采用基于CHARMM力场的NAMD方法,对不同尺寸的
近年来,粘性系数依赖密度的Navier-Stokes方程引起了人们的关注,其典型方程是描述浅水波运动的粘性Saint-Venant方程.当真空出现时,该类方程会出现退化.因而对大初值,弱解的整体存在性一般不能采用证明一致粘性的可压缩Navier-Stokes方程的重整化方法直接证明.我考虑带弥散效应(具有表面张力)一维可压缩Navier-Stokes方程的初边值问题我们证明对一般的大初始值,该初边
本文研究的是交错扩散项为分式形式的Lotka-Volterra捕食模型:其中Ω是Rn中的有界区域,(?)Ω是光滑的,常数b,c,λ,μ,β均为正数,u,v分别代表被捕食者和捕食者的种群密度,λ,μ代表被捕食者和捕食者的出生率,b,c代表的是被捕食者和捕食者之间的相互反应.把(1)中的第二个方程改写成散度形式,为vt=(?)·[(1+(?))(?)v一(?)u],(?)u前面的系数是负的说明捕食者向
本文考虑Fokker-Planck-Boltzmann(FPB)方程的初值问题:其中f=f(x,v,t),(x,v,t)∈R~3×R~3×R+,f是未知的分布函数。本文主要研究FPB方程关于M0(absolute Maxwellian)小扰动下整体强解的存在性,唯一性以及大时间行为。对于空间非齐次FPB方程,我们证明了当初值充分靠近M0并且粘性系数充分小,初值问题(1)存在唯一的整体强解,如果还有