随机和分布的若干性质

来源 :苏州大学 | 被引量 : 0次 | 上传用户:h120568
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随机和在排队论、风险理论、网络通信、无穷可分分布理论以及分支过程理论等诸多应用概率领域都有广泛的应用,近年来许多学者对此进行了大量的研究,并得到了许多很好的结果。在深入学习前人文章的同时,我们也略有所悟,得到了关于随机和的几个结果。本文主要从两个方向探讨了随机和的性质:一个方向是关于重尾项数随机和的分布,其主要结果在第二章中给出;另一个方向是关于支撑在R上的随机和尾分布的下极限,其主要结果在第三章中给出。
其他文献
近三十年来,针对Dirichleit边值问题谱方法的研究已经形成了较为完整的理论体系。而研究Neumann边值问题同样具有重要的理论意义和应用价值。在标准的变分形式中,Neumann边界条
Banach空间中各种常数的研究对刻画空间的性质,如一致正规结构和Schur性质等有着重要的价值。同时,各常数之间的关系的研究,对于常数理论的发展起着重要的作用。首先,对若干常数
小波分析是傅里叶分析发展170多年来对其最辉煌的继承、总结和发展,对分析工具起着承前启后、继往开来的重要作用。小波分析的理论研究是与小波分析的应用紧密的结合在一起的
不动点理论是日前正在迅速发展的非线性泛函分析理论的重要组成部分,与近代数学的许多分支有着密切的联系,如:拓扑学理论、近代分析、算子理论、空间机构理论等。它的应用非常广
确定Abel积分的孤立零点个数的最小上界,是当今分岔理论研究的热门课题之一,这一问题与确定Hamilton系统或可积系统在多项式扰动下的极限环个数密切相关.这是Hilbert第16问题的
本文应用动力系统的分支与混沌理论,以及数值模拟研究带有参数和外力激励的Josephson系统。通过运用Melnikov方法,证明系统在周期扰动下的混沌的存在性;通过运用二阶平均方法和M