论文部分内容阅读
随着经济的快速发展,重载交通已成为高速公路的主要运输形式,也成为控制路面结构设计、材料设计的关键因素,在此大环境下,沥青路面破坏现象十分严重,原因也很复杂。但当以车辙、水损害等为代表的早期破坏现象频频出现于环境条件、交通组成、施工水平、路面结构及原材料均不尽相同的全国范围高速公路时,有理由认为目前全国通用的沥青混合料配合比设计方法可能已经无法满足现实的交通需求,以往的工程经验也可能难以有效地指导工程建设,更难以解决工程中出现的新的技术问题。 为缓解沥青路面的早期破坏现象,在详细分析现行沥青混合料配合比设计成型方式及设计指标的不足的基础上,采用以旋转压实为成型方式、以力学参数为设计指标的GTM为试验工具;以考虑耐久性并使混合料综合路用性能最优为判据重新确定了GTM旋转基准角;以散体强度理论研究成果为支撑,通过对大量试验数据的统计分析,提出了新的GTM方法设计标准,并在此基础上提出了基于GTM的沥青混合料配合比设计方法。开发了能准确测定沥青混合料理论最大密度及集料有效密度的试验方法—沥青浸渍法;研究对比了GTM方法及马歇尔方法计的沥青混合料体积参数及路用性能;以抗车辙能力及抗水破坏能力最佳为标准,以GTM为设计手段,对连续密级配沥青混合料级配进行优化,提出了AC-25、AC-20、AC-16、AC-13优化级配范围,级配优化结果同时验证了散体强度理论的正确性。以级配优化结果及散体强度理论为基础提出了基于抗车辙及抗水破坏能力的沥青混合料级配配比设计计算方法;通过实体工程对GTM方法设计结果及可行性进行验证,提出了基于GTM方法的沥青路面施工工艺。 研究结果表明,与传统马歇尔方法相比,采用新方法设计的沥青混合料体积参数及路用性能均表现出新的特点:GTM方法设计的沥青混合料胶结料含量较低、试件密度高、空隙率及矿料间隙率小、饱和度大,混合料高温抗车辙能力、抗水破坏能力、低温抗裂能力及抗疲劳能力均显著提高。开发的沥青浸渍法能准确测定沥青混合料最大理论相对密度及集料有效相对密度。实体工程表明,尽管GTM设计的混合料油石比较低、压实度标准较高,但使用现有的施工设备,施做的路面压实度完全可以达到较高标准,现场空隙率可控制在6%以下,但它却必须以公路建设者积极采用先进的施工工艺及科学的施工管理方法为基本条件。