发病前长期服用抗血小板药物对静脉溶栓治疗效果的影响

来源 :郑州大学 | 被引量 : 0次 | 上传用户:wangcong1001
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的探讨发病前长期服用抗血小板药物(Antiplatelet,AP)的急性缺血性卒(acute cerebral ischemic stroke,AIS)患者行静脉溶栓(intravenous thrombolysis,IVT)治疗的安全性和有效性。方法本研究回顾分析2017年6月-2019年7月在郑州大学第五附属医院急诊科就诊,并经过郑州大学第五附属医院急诊脑卒中绿色通道神经内科专科医师会诊评估,急查血生化常规、肝肾功能、凝血系统功能、血糖,脑CT检查排除颅内出血,排除其他IVT禁忌症之后,患者家属知情同意并签字,风险已知,同意静脉溶栓,一共随机纳入230例。IVT前服用AP(≥3天)为长期服用AP。AP组:110例,作为观察组。其中只服用阿司匹林一种AP的患者有70例(阿司匹林,100mg,阿司匹林组),只服用氯吡格雷一种AP的患者有18例(氯吡格雷,75mg,氯吡格雷组),服用阿司匹林和氯吡格雷两种AP的患者有22例(阿司匹林100mg+氯吡格雷75mg,双抗组);平时未服用AP的患者有120例,作为对照组。部分数据由我院脑卒中中心研究办公室后期随访获得。比较所有入组患者的一般临床资料:人口学特征、入院时血压、血糖、发病-溶栓时间(onset to treatmenttime,OTT)、溶栓前NIHSS评分(美国国立卫生研究院卒中量表,National Institutes of Health Stroke Scale,NIHSS);既往服药史、既往基础疾病病史,个人史及TOAST分型;有效性评价:IVT后24 h、7d、2w的NIHSS评分。用mRS来评估90天后的神经功能恢复情况,预后良好(mRS<2),预后不良(20.05,差异无统计学意义。2.发病前长期服用单抗组和未服用AP(对照组)相比,单抗组的近期疗效优于对照组:(IVT 后 24 小时 NIHSS 评分 4.54±3.54 vs 6.43±3.6,P=0.044<0.05;7d 后 NIHSS 评分 3.04±2.8 vs 4.58±2.6,P=0.032<0.05;2 周后 NIHSS 评分为2.47±1.2 vs 3.53±1.7,P=0.048<0.05);单抗组的远期预后优于对照组(3月后mRS评分1.71±1.2 vs 2.35±1.2,P=0.043<0.05);单抗组和对照组HT的发生率无显著差异(3.4%vs 2.5%,P=1.000>0.05);两组患者死亡率均为0,无明显差异。3.发病前长期服用双抗组和对照组相比,双抗组的近期疗效优于对照组:(IVT 后 24 小时 NIHSS 评分 5.37±3.42 vs 6.63±3.6,P=0.046<0.05;7d 后 NIH SS 评分 3.03±2.4 vs 4.58±2.6,P=0.042<0.05;2w 后 NIHSS 评分 2.12± 1.5 vs 3.53±1.7,P=0.034<0.05);双抗组的远期预后优于对照组(3月后mRS评分1.65±1.3 vs 2.35±1.2,P=0.038<0.05);两组患者HT的发生率无明显差异(9.1%vs 2.5%,P=0.217>0.05),但双抗组ASICH的发生率较对照组明显增高,有显著差异(9.1%vs 0.83%,P=0.013<0.05);两组患者死亡率均为0,无明显差异。4.发病前长期服用双抗组和单抗组相比,双抗组和单抗组的近期疗效无显著差异(IVT 治疗后 24h NIHSS 评分分别为 5.17±3.42 vs 5.14±3.54,P=0.894>0.05;7d NIHSS 评分 3.03±2.4 vs 3.04±2.8,P=0.932>0.05;2 周 NIHSS 评分分别为2.12±1.5和2.47±1.2,P=0.448>0.05);两组患者远期预后无显著差异(IVT 治疗 3 个月后 mRS 评分 1.65±1.3 vs 1.71±1.2,P=0.743>0.05);两组患者HT的发生率无显著差异(9.1%vs 2.3%,P=0.127>0.05),但双抗组的ASICH发生率较单抗组明显增高,且有显著差异(9.1%vs 1.1%,P=0.04<0.05);两组患者死亡率均为0,无明显差异。5.发病前长期服用阿司匹林组和氯吡格雷组相比,两组患者IVT后近期疗效比较无显著差异(IVT治疗后24小时NIHSS 5.08±3.52 vs 6.43±3.6,P=0.244>0.05;7d后NIHSS评分2.96±2.9 vs 3.412±2.6,P=0.232>0.05;2周后NIHS S评分2.32±1.1 vs 3.53±1.7,P=0.348>0.05);两组患者远期预后无显著差异(I VT 治疗 3 个月后 mRS 评分 1.65±1.3 vs 2.15±1.0,P=0.243>0.05);HT 的发生率无明显差异(1.4%vs 5.6%,P=0.369>0.05),ASICH发生率无显著差异(0 vs 5.6%,P=0.205>0.05);两组患者死亡率均为0,无明显差异。结论1.发病前长期服用单一 AP(阿司匹林或者氯吡格雷)的AIS患者进行IVT治疗是安全的、有效的,且无显著增加SICH的发生率和死亡率。2.发病前长期服用双联AP(阿司匹林联合氯吡格雷)的AIS患者进行IVT治疗的近期疗效、远期预后均优于未使用AP的患者,虽然双联AP增加了 ASICH的风险,但不引起严重的症状,不影响患者的长期功能预后,不增加患者的死亡率。
其他文献
高能重离子碰撞物理从上世纪70年代末80年代初开始兴起,随着实验条件的不断改善和计算机技术的飞速发展,现今已成为现代物理学中一个重要的研究方向。所谓“高能”指的是能量特别高,而“重离子”指的就是原子核,将两个原子核加速到接近光速,它们碰撞后形成的物质即为高能重离子碰撞物理研究的对象。目前世界上能量最大的两个加速器RHIC和LHC都确认了一种新型物质形态——夸克胶子等离子(QGP)体的存在,理论上,
近年来随着人类社会的发展,对水产品的需求越来越大,不断对海洋资源的进行开发和利用,但由于不科学的使用化学品,直接或者间接的对海洋环境造成生态压力,海洋生态环境遭到很大的破环。如何减小因发展带来的环境压力,以及科学合理使用化学品并保障海洋可持续性发展成为重要的研究课题。本研究建立在2017年至2018年对乐清湾四个季度的海洋环境调查数据为基础,通过建立高准确度、高灵敏度的检测方法,分析了乐清湾海域水
背景:瘢痕疙瘩是由创伤、烧伤、手术等引起的皮肤深部损伤而出现的纤维增殖性疾病。无论是在美观上,还是在功能(如挛缩)或者是在主观感受上(包括瘙痒症),都影响患者的生活质
目的:既往研究报告中对人类表皮生长因子受体2(HER-2)高表达与结直肠癌(CRC)患者预后和临床病理特征之间的关系尚有争议。本研究利用meta分析方法系统评估HER-2与结直肠癌的
可调控的手性超材料是一个关键材料,其被用于构建未来纳米光子学系统的可重构的具有功能性的元件,其在偏振敏感成像、纳米全息、相位裁剪及控制等领域有着巨大的应用潜力。本论文将研究由于几何方面的变化引起的手性超材料光学性质的变化。我们相信本工作,作为基础研究,将有利于探索和开发一些新型的基于可调控性的纳米超器件。本文主要研究手性超材料结构单元的形变对光的传输性质的调控作用。主要研究内容如下:(1)对基于透
丢番图问题与L-函数二次均值是数论的重要研究课题,不定方程与丢番图逼近是丢番图问题的两个主要研究内容.本文利用初等数论的递归序列方法解决了一个高次不定方程的求解问题,利用解析数论的方法研究了一类素变量混合幂丢番图逼近问题及L-函数的二次均值问题,主要结果如下:1.证明了不定方程5x(x+1)(x(x+2)(x(x+3)=18y(y+1)(y+2)(y+3)仅有四组非平凡整数解(x,y)=(6,4)
藏南雅鲁藏布缝合带混杂岩记录了新特提斯俯冲、印度与欧亚大陆碰撞和缝合等过程,研究其形成过程及物质来源对恢复古板块构造格局,重塑古洋盆形成、演化及消亡过程等方面具有重要意义。前人对该混杂岩的研究主要集中在新特提斯洋俯冲及印度亚洲碰撞过程,而对于其本身形成与演化过程以及蛇绿岩的剥露历史缺乏足够的关注。本文选择了雅鲁藏布缝合带中段布马和路曲以及东段朗县的混杂岩开展了详细的野外地质调查,并进行了砂岩碎屑成
为研究随机干扰对食饵具有庇护效应的捕食系统的影响,考虑功能反应以及阶段结构等因素,运用生态学及It?公式、Lyapunov函数、Chebyshev不等式等随机微分方程研究方法,主要研究了随机捕食系统中解的性态特征,得出以下结果:(1)在Beddington-DeAngelis(BD)型功能反应的确定性系统中,考虑庇护效应和随机干扰因素,建立具有庇护效应和BD型功能反应的随机捕食-被捕食系统模型,讨
原子核在人们的印象中是一种类似球形的结构,但最早由Wheeler提出,在合适的条件下,原子核将会出现很奇异的形状,例如环形结构,但环形结构会存在着各种不稳定的因素,于是该结构能否稳定存在就需要进一步的研究。本文选取了轻核区域内的还有中等质量区域的原子核作为主要研究对象,基于能量密度泛函理论,对不同条件下原子核进行自洽的能量进行计算,主要是约束四极矩Q20的Hartree-Fock-Bogoliub
本文主要研究了完全非正rational Bernstein-Vandermonde矩阵、逆完全非正rational Bernstein-Vandermonde矩阵和rational Said-Ball-Vandermonde矩阵的奇异值、特征值以及线性系统解的高精度算法.文中分别构造出了这三类矩阵.在第二章中,计算了rational Bernstein-Vandermonde完全非正类矩阵的奇异值