【摘 要】
:
真实感流体模拟的目标是获得物理真实、视觉细节丰富的流体动画。欧拉网格法是实现真实感流体模拟的经典方法,并随着近年数据驱动技术的兴起受到进一步重视。然而,欧拉网格法的求解过程存在难以避免的精度损失,造成流体细节丢失,降低了模拟质量,影响模拟流体动画的视觉效果。尽管直接提高模拟分辨率能改善模拟精度,但这同时也引起了计算开销的大幅增长。因此,如何在保证性能的同时,适当补偿求解过程中的精度损失,从而增强模
【基金项目】
:
国家自然科学基金青年基金项目(61502109,自适应快速模拟细节丰富的流体技术研究); 广东省自然科学基金博士启动项目(2016A03010342,基于混合模型的湍流模拟技术研究);
论文部分内容阅读
真实感流体模拟的目标是获得物理真实、视觉细节丰富的流体动画。欧拉网格法是实现真实感流体模拟的经典方法,并随着近年数据驱动技术的兴起受到进一步重视。然而,欧拉网格法的求解过程存在难以避免的精度损失,造成流体细节丢失,降低了模拟质量,影响模拟流体动画的视觉效果。尽管直接提高模拟分辨率能改善模拟精度,但这同时也引起了计算开销的大幅增长。因此,如何在保证性能的同时,适当补偿求解过程中的精度损失,从而增强模拟流体的真实感细节,是欧拉网格法的重要研究内容之一。对流项求解精度损失是欧拉网格法的主要误差来源之一。针对这一问题,本文以烟雾为研究对象,提出了一种基于对流涡度损失的自适应涡旋限制力方法。本文研究具体从两方面问题入手:一方面,虽然对流求解算法精度不断地被提升,但这些算法通常忽略了速度在自对流时的不可压缩性,模拟系统的部分能量在该过程中被转化成散度分量,并在随后的压力投影步骤中被消除,导致模拟精度损失。另一方面,虽然涡旋限制力作为当前主流的精度补偿方法,能快速地对损失的涡旋细节进行增强,但其强度仅由常数因子ε调节,存在一定的自适应性缺陷,既无法识别和恢复已损失的涡旋分量,也容易在强度控制因子ε较大时造成模拟流体不稳定。基于上述对流精度和自适应性两方面不足,本文提出一种新型的自适应精度补偿方法。其具体过程为,首先借助涡度场特有的无散性,分别对涡度场和速度场进行对流,通过测量对流后涡度场的差异,获得速度自对流中精度损失的情况,构造涡度损失因子;接着,将该损失因子与涡旋限制力结合,提出一种基于对流涡度损失自适应的涡旋限制力方法;最后,使用这一改进的涡旋限制力方法对模拟流体进行自适应精度补偿,从而提升模拟流体的真实感细节丰富度。实验结果从视觉质量和性能分析两方面验证了本文算法的有效性。模拟流体视觉细节的丰富程度是评估流体细节增强算法的主要标准之一。通过在二维和三维的不同场景中应用本文方法,与相关工作进行视觉质量对比,可见本文方法能保存更多的湍流细节,且相比前人的类似方法具有更佳的增强效率和自适应性。随后的性能分析也通过时间开销和系统能量演变进一步展示,本文方法在视觉质量和计算开销两方面取得更好的均衡,能以较高的计算效率有效地实现了对模拟烟雾流体的能量补偿和涡旋细节增强。
其他文献
目前电子产品朝着轻、薄、短、小化的趋势发展,集成电路体积越来越小、功能越来越强、引脚数越来越多、信号传输速度越来越快。芯片的集成度不断提高,与其匹配的芯片封装技术也不断发展。扇出型封装技术凭借高密度、低厚度、高性能等突出优点,成为封装技术新的方向。推动高密度封装技术发展的关键在于互连线路的制造水平和封装工艺技术的进步。互连线路制造技术成为当前封装技术的一大技术要点。随着封装及互连线路向高密度、高精
高分辨率图像具有画质清晰、色彩丰富等优点,广泛应用于安全监控、医疗成像、自动驾驶、视频直播等生活场景。然而现实生活中,图像成像过程受环境噪声、欠采样等因素影响,实际应用获得的图像质量较低,难以满足人们的需求。图像超分辨率技术通过软件算法将低分辨率图像重建为高分辨率图像,是计算机视觉领域的研究热点。随着深度学习的快速发展,基于卷积神经网络的图像超分辨率重建已经取得了长足的进步,但是目前仍然存在许多问
物联网技术(IoT)是信息科技产业的第三次革命,通过把信息传感装置与互联网连接起来,实现设备的“高效、节能、安全、环保”智能化识别和管理,是制造业实现产业升级的必然途径。胀断机床是连杆胀断工艺的关键设备,论文针对广东工业大学研制的汽车连杆胀断机床,设计了一套基于物联网技术的远程监控系统,用于实时采集胀断机床液压系统的压力与温度数据,并将其上传至网络监控平台,实现对液压监控系统的远程监控与分析,实时
伸缩臂叉车是一种具有承载、运输、越野等功能的工程车辆,常用于农场、码头口岸、厂区等场所。伸缩臂叉车因结构复杂,参数配置不合理等原因,容易在行驶工况中产生共振问题,若发生共振,其部件加速度则会放大10-20倍,峰值加速度达到1500mm/s,将会严重损害到叉车的使用年限且容易造成操作人员驾驶疲劳,因此如何抑制伸缩臂叉车的共振一直以来都是企业优先考虑的问题。本论文依托某重工企业项目,研究了某型号复杂工
钛及钛合金材料具有比强度高、疲劳强度高和生物相容性好等性能优势,已经广泛地应用在航空航天、军事和医疗等领域。相比传统的制造技术,金属增材制造(3D打印)技术可以成形结构复杂且性能优异的零件。TC4合金粉末是目前主流的金属增材制造技术原材料,粉末的性能对成形件的缺陷和性能均会产生影响,为保证增材制造钛合金成形件的质量,TC4合金粉末需要满足球形度高、形貌好和粒径小等特点。现阶段,电极感应熔炼气雾化(
在中国制造2025计划的推动下,信息物理融合系统(CPS,Cyber-Physical Systems)成为当前智能制造和工业数字化、信息化的重要研究热点。分布式架构的CPS拥有大量异构设备,这些异构设备每时每刻产生大量的时序数据,这些数据通过有线网络、无线网络和本地网关等进行数据传输,如何对它们进行实时采集、传输和监控是关系到企业管理高效性和变化适应性响的关键问题。现有监控系统存在数据采集协议不
知识抽取可以将半结构化和非结构化的文本类数据转化为结构化的数据,为构建知识图谱,问答系统,知识库建立等自然语言处理领域的子任务所使用。而在现实应用中,知识抽取面临许多的挑战,一方面对于中文命名实体识别(NER)任务,只有非常少量的标注数据。中文命名实体识别和汉语分词(CWS)任务有许多相似的词边界。每个任务中也有特定的特性。然而,现有的中文命名实体识别方法要么没有充分利用语料中的词边界信息,要么无
近年来集成电路技术的快速发展,导致电子元件逐渐向微型化,低功耗,智能化方向靠近。对于电子表面贴装行业来说,元件贴装难度也越来越高,贴片机作为表面贴装技术的核心设备,它的贴装效率以及精度要求也更加严格。为了进一步提高贴片机视觉定位算法的精度可靠性,本文通过分析国内外的贴片机发展以及视觉定位算法的研究现状,了解到目前国内定位算法的精度和稳定性较差,容易受到目标环境等干扰。为此本文以提高定位算法的可靠性
随着信息技术的加速发展,信息阻塞也越来越严重,用户对所需信息的需求质量也随之提高,这成为了当下急需解决的问题。随着推荐系统的应运而生,学术界和工业界在此领域也进行了广泛研究。但当前的信息推荐,使各个领域内信息互相匹配且相似的内容与用户所需要的信息内容结果相比还不太理想,且对于推荐给用户所真正需要的资源还需要精准和完善。所以,眼下怎样令用户得到合理化和个性化的资源是推荐算法的主要研究目标。本文针对这
如今人们的生活被互联网包围,网络设备需要不间断地运行以满足终端用户的需求,每时每刻都有大量的数据通过公共和私有网络与网络设备进行交换,但互联网与网络设备的开放连接访问在大多数日常网络活动中带来了网络安全威胁。网络入侵检测系统是一种可靠高效的保障网络安全的技术,但目前的网络入侵检测系统仍存在面对不均衡样本时检测的准确率低误报率高的问题,本文研究的基于神经网络模型的网络入侵检测具有重要的理论意义和应用