【摘 要】
:
在金属表面(Ni、Cu等)催化生长是制备石墨烯的常用手段,但对石墨烯生长过程的观察还不够详细,使得对其生长机理的理解还不够深入。因此,对金属衬底上的石墨烯生长过程进行高空间和时间分辨的原位表征有助于人们完善石墨烯生长机制。本论文利用高分辨透射电镜和原位气相系统,实现了对纳米多孔金(NPG)表面石墨烯生长从初始到完成所有动态过程的原子尺度和毫秒时间分辨的原位观察,取得了一些有意义的成果。具体的研究成
论文部分内容阅读
在金属表面(Ni、Cu等)催化生长是制备石墨烯的常用手段,但对石墨烯生长过程的观察还不够详细,使得对其生长机理的理解还不够深入。因此,对金属衬底上的石墨烯生长过程进行高空间和时间分辨的原位表征有助于人们完善石墨烯生长机制。本论文利用高分辨透射电镜和原位气相系统,实现了对纳米多孔金(NPG)表面石墨烯生长从初始到完成所有动态过程的原子尺度和毫秒时间分辨的原位观察,取得了一些有意义的成果。具体的研究成果如下:(1)NPG催化甲烷热解形成的富碳环境中生长石墨烯的方式,既不是传统意义的“偏析加沉淀”方式也不是“表面吸收”方式,而是以大量石墨烯小片段动态的连接与断裂相互竞争的方式进行生长。高空间和时间分辨的原位观察结果表明:先在NPG表面的非晶碳层中形成大量的石墨烯小片段,它们因周围碳原子的吸附生长而形成二维连接。生长后的石墨烯被甲烷热解产生的中间体剧烈运动而撕碎,撕碎的石墨烯碎片被碳原子重新连接。石墨烯的生长一直处于连接和断裂的动态竞争之中,直到形成大面积石墨烯。(2)NPG表面还存在另一种石墨烯内层层状生长方式。由于Au中碳的溶解度极低,且是内层生长,因此这种生长方式也不同于传统的“偏析加沉淀”和“表面吸收”模式。首先NPG表面的石墨烯在甲烷热解过程中被撕碎,形成碎片状的石墨烯。缺陷处成为气体和NPG催化接触的通道,进而在缺口附近形成大量新的非晶碳,这些非晶碳为石墨烯的内层生长提供了充足的碳源。(3)富碳环境中生长石墨烯,同时存在石墨烯和非晶碳对碳原子的动态竞争。NPG表面大量的非晶碳可以作为碳源,在石墨烯片段的边缘规则排列,促进石墨烯的生长。同时,剧烈运动的非晶碳也会“撕扯”石墨烯上的碳原子,把它们重新非晶碳化,使得石墨烯逐渐消失。
其他文献
无论是哪个量子系统都不能跟外界隔离开来独立存在的,真正的量子系统都会与外部环境产生相互作用。从而其中出来量子系统退相干的概念。探究开放量子体系的退相干特性和动力学行为,我们必定要慎重思考其所处库的特点,库的种类不一样会出现彻底相似的的动力学研究成果。解决开放量子系统的传统方法通常只考虑系统和环境之间的弱耦合,并将该库视为没有记忆效应的马尔可夫过程。所以对探究量子开放系统的非马尔科夫动力学及其相关的
目的:本研究目标旨在以老年抑郁症伴躯体疼痛患者为对象,探索中频电治疗辅助SSRIs类抗抑郁药对患者抑郁症状、疼痛症状和生活质量的影响。方法:本研究为随机对照单盲研究。来
为了研究藏族音乐、塔吉克族音乐、彝族音乐对奶牛产奶量的影响。选取产奶量、年龄、胎次相近的荷斯坦泌乳牛64头,随机分成4组,即藏族音乐组、塔吉克族音乐组、彝族音乐组、
城市化促进了交通行业的快速发展,同时也带了严峻的交通问题。以南宁市为例:机动车辆和出行人次快速增长,使得道路呈现严重拥挤的状态,交通事故频发,给交通管理系统正常运行带来了挑战,同时对交通管理智能化需求日益强化。智能化交通管理对交通状况改善、城市现代化以及相关产业完善均具有举足轻重的作用。智能交通管理系统,简称ITMS,涵盖了多种先进的信息处理技术,运用监测、通信等手段实现对城市的一体化管理,改变原
随着计算机、互联网通信等技术的发展,远程教育成为了最具发展前景的新型教学模式。自动化阅卷作为远程教育体系中的重要环节,在保证阅卷公平性、减轻阅卷人工作量等方面发挥着重要作用,自动阅卷技术的发展推进了远程教育走向智能教育的步伐。在轨道交通系统中,远程教育体系被运用到了各部门人员的入职培训和继续教育等环节。轨道交通信号是轨道交通电务工作人员的必修知识,经常作为电务系统的各阶段培训的考核内容。目前,客观
食品和饮料中的药物残留及功能成分的萃取分析至关重要。由于样品自身环境的复杂性、多样性给测定带来了一定影响,提高吸附剂的选择性、专一性有利于提高检测效率,缩短检出时
随着互联网越来越发达,人与人之间的距离被无限拉近;通信行业的高速发展也使得大容量与高频率的信息交互成为可能。与此同时,人们日渐提高对信息图像化的诉求,数字化图片与视
对于量子计算,量子加密以及可扩展的光量子信息处理等领域的发展来说,高纯度,高全同性,高发光效率,且能够定向发射的集成固态单光子源是其中重要的一环。在其研发过程中,量子点-微腔耦合系统由于其高度的可操控性,可集成性以及巨大的发展潜力,成为了近二十年中的研究热点。该系统对于微腔的性能有数点要求,其中就包括了较小的有效模式体积。产生于金属纳米结构表面的局域表面等离激元由于具有可以突破光学衍射极限的极低模
科技发展的脚步越来越快,人类已经进入新的信息时代。而作为信息获取最重要和最基本的技术——传感器技术,也得到了极大的发展。具有感知能力、计算能力和通信能力的无线传感
直接带隙的有机无机杂化钙钛矿材料因具有非常优良的全波段光吸收率、优良的载流子传输性能、高的缺陷容忍度,在新型太阳能电池、LED等领域成为新能源领域的研究热点。基于有机无机杂化钙钛矿材料的单异质结钙钛矿太阳能电池(PSCs),光电转换效率(PCE)从2009年首次报道的3.8%,目前迅速跃升到的24.2%。钙钛矿太阳能电池的制备过程相对传统太阳能电池也更简单,能耗低,造价低廉,使得PSCs成为当前光