一类无界算子矩阵的本质谱

来源 :内蒙古大学 | 被引量 : 1次 | 上传用户:mahw9866
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究了主对角和次对角定义域的无界算子矩阵M=(A B C D)的左本质谱和本质谱.结合和Schur分解方法和Fredholm性质,得到判断复数λ是否为本质谱的充分必要条件.  
其他文献
本文主要围绕乘积微分算子的自伴性及特征值对边界的依赖性展开研究.  微分算子从本质来说是无界可闭的线性算子,无界闭的线性算子的定义域一定不能是全空间,因此定义域的选
1981年H.Shima和K.Yagi在文献[15]给出了 Hesse度量的等价条件和Hesse流形上的若干恒等式,但是文献中未涉及H esse流形的Gauss方程和Codazzi方程.本文以黎曼流行的Gauss方程
随着时代的发展,我们对疾病的认识也更加深入。疾病的产生不但可以用网络来表示,还可以通过网络来研究病理,找到致病的原因。病理的发现就是寻找网络中的分子靶标并证明它们
本文主要研究带有非线性边界条件的非线性扩散方程{ut=△um+up,(x,t)∈Ω×R+,(a)um/(a)v=uq,(x,t)∈(a)Ω×R+,u(x,0)=u0(x),x∈(Ω)解的爆破时间的下界估计,其中p,q>0,Ω是R3上的有界星形
设H1,H2,H3是可分的复Hilbert空间,记M=(A E F O B D O O C)为H1⊕H2⊕H3上的3×3上三角算子矩阵.设A∈B(H1),B∈B(H2),C∈B(H3),E∈B(H2,H1)是给定的算子.文中首先利用对角元算子A,B,C的值域
本文研究了几类疾病在单种群和多种群之间传播的传染病模型的动力学性质,全文共分为三章:  第一章,绪论,介绍了本文的研究背景和主要工作,以及所用到的预备知识.  第二章
在组合数学中,交叉与覆盖是两种比较重要的统计量。近些年,大量的学者对集合划分和匹配上的交叉与覆盖进行了研究。本文主要针对集合划分、匹配以及二元对上的交叉与覆盖进行了
管状工程结构被广泛应用于建筑、车辆、航空航天、水利工程等多个领域。采用基于布尔和运算的实体几何(CSG)造型技术成为了构建管状工程结构CAD模型的常规方法。然而,布尔和
本文通过对荣华二采区10
本文以第七届中国国际园林花卉博览会为背景,简单介绍了生态节能示范工程中采用的太阳能光伏发电、光导等节能技术的原理及实际应用情况。为新技术的应用、推广提供设计依据