论文部分内容阅读
镁基复合材料因具有比强度、比刚度和比模量高、质量轻等优异特性,被认为是目前提高镁合金力学性能、实现其工业化应用最具优势的途径之一。纳米碳材料(石墨烯、碳纳米管等)具有高强度、高模量等优异的力学性能,常被用作镁基复合材料中的增强体。而纳米碳增强体与镁基体往往难以产生稳定的界面结合。通过引入MgO纳米颗粒作为中间体,可以显著提高镁基体与纳米碳增强体间的界面结合强度。本文采用第一性原理计算,通过对Mg/MgO,MgO/graphene以及Mg/graphene三种界面结构的结合性能进行研究,在原子尺度阐明了MgO在镁基体与纳米碳增强体间产生桥梁作用的机理。研究结果可以为后续镁基复合材料的设计提供指导思路,加速新型镁合金的开发。主要研究内容如下:1.对Mg及MgO进行体相性质计算,并将结果与实验数据对比,验证计算方法的可靠性。切取Mg(0001)及MgO(1-11)表面,进行表面收敛性与稳定性的计算,确定各表面结构能体现体相性质时的原子层数。根据不同表面终端及界面处原子对齐方式,建立了6种不同Mg(0001)/MgO(1-11)界面结构(具有O终端的O-top、O-hcp、O-fcc型和具有Mg终端的Mg-top、Mg-hcp、Mg-fcc型结构)。通过界面间距与界面分离功关系曲线获得了各种结构模型的最优界面间距,以及对应的界面分离功。取最优界面间距,对各界面结构模型进行几何弛豫。发现O终止型Mg(0001)/MgO(1-11)界面较Mg终止型结构具有更高的界面分离功,意味着其能产生更为紧密的界面结合。电子性质的研究表明O终止型结构中是由离子键及微弱的共价键共同作用产生的结果,而Mg终止型结构中界面处主要是以金属键结合。这也是造成宏观上两种终止型界面结合强度差异的根本原因。2.根据晶格失配度的计算,对MgO(1-11)及graphene表面进行扩胞处理,使二者得以组成共格界面。同样由于不同的终端及界面处原子对齐方式,MgO(1-11)/graphene界面存在四种不同结构:具有O终止型MgO(1-11)表面的OTH、OB和Mg终端的MTH以及MB型结构。通过UBER法与完全几何优化法计算界面分离功,发现O终止型MgO(1-11)表面较Mg终止型更易与石墨烯产生较为稳定的结合。电荷密度及态密度等电子结构的研究中,可以看到OTH结构界面处对齐顶位的O原子与对应的C原子间有明显的电荷汇聚,说明处于top位的O原子破坏了对应石墨烯层中的sp~2键,并与所对齐的C原子组成较强的共价键。这使得MgO(1-11)表面与石墨烯表面间产生紧密的界面结合。3.由于Mg(0001)与graphene两表面晶格参数差异大,建立了较大表面超胞才使得两表面结构相匹配,因此仅选择了包含全部原子对位方式(top、hollow及bridge)的一种Mg(0001)/graphene界面进行研究。作为参照,比较了全文中所有界面结构的分离功,发现UBER拟合所得三种界面中界面结合强度排序为Mg(0001)/MgO(1-11)>MgO(1-11)/graphene>Mg(0001)/graphene。而经过充分的几何弛豫后,OTH型MgO(1-11)/graphene结构界面粘附功由0.93J/m~2增长为4.70J/m~2,甚至超过了Mg终止型Mg(0001)/MgO(1-11)界面,说明在一定的终端及对齐方式下,MgO(1-11)面可以与石墨烯结合成为牢固的界面。电荷密度的研究结果表明Mg(0001)与石墨烯之间仅能以微弱的π键连接,这也是Mg(0001)/graphene界面结合性能不佳的原因。本文的研究表明纳米碳材料与Mg基体间难以形成稳定界面,而引入MgO后,O终止的MgO(1-11)表面与Mg(0001)或graphene均能产生紧密的界面结合。证明MgO确实能在镁基体与纳米碳增强体间起到良好的桥梁作用。