【摘 要】
:
随着互联网,尤其是移动互联网的快速发展,人们在互联网上留下了的大量包含情感信息的评论。对海量用户评论进行文本情感分析,可以挖掘出人们对产品、服务的真实情绪、态度和意见。这些信息有利于消费者做出选择以及商家、服务平台对产品服务进行优化,尤其是用户评论中被消极评价的意见目标,简称消极情绪意见目标。抽取用户评论中消极情绪意见目标,可以帮助商家更有针对性的改进自身产品或服务中的问题,帮助消费者了解产品或服
论文部分内容阅读
随着互联网,尤其是移动互联网的快速发展,人们在互联网上留下了的大量包含情感信息的评论。对海量用户评论进行文本情感分析,可以挖掘出人们对产品、服务的真实情绪、态度和意见。这些信息有利于消费者做出选择以及商家、服务平台对产品服务进行优化,尤其是用户评论中被消极评价的意见目标,简称消极情绪意见目标。抽取用户评论中消极情绪意见目标,可以帮助商家更有针对性的改进自身产品或服务中的问题,帮助消费者了解产品或服务中存在的缺陷,更好的做出选择,还可以帮助服务平台对商家进行有效的监督。本文针对面向用户评论的消极情绪意见目标抽取,这项新的细粒度情感分析任务,提出了两个模型。(1)本文首先提出了基于字词混合嵌入与注意力机制的消极情绪意见目标抽取模型。该模型使用基于字词混合嵌入的单词表示方法,增强对较差文本质量用户评论数据的泛化能力。在此基础上,通过增加基于注意力机制的情感特征捕获方法,辅助对意见目标情感极性的判定。在三个数据集上的消融实验及与11个基线模型的对比实验中,本文提出的模型取得最佳效果,验证了字词混合嵌入和注意力机制的有效性。(2)基于多特征融合的消极情绪意见目标抽取模型。意见目标情感特征之间的相互干扰,影响了意见目标情感极性判定的准确性。本文进一步提出基于融合依存句法关系特征和多粒度局部特征的模型,该模型在缓解意见目标情感特征之间的相互干扰的同时,增强模型正确捕获意见目标情感特征的能力。在三个数据集上进行的对比实验和消融实验,验证了依存句法关系特征和多粒度局部特征的有效性。通过实验分析,本文提出的基于字词混合嵌入与注意力机制的方法可以提升消极情绪意见目标抽取性能,提出的基于多特征融合的方法相对于其他神经网络方法更加有效,相对于已有的神经网络方法可以挖掘出语句的非线性信息,有助于捕获意见目标及其情感特征之间的依赖关系。
其他文献
随着科技的发展,以及人工智能领域各项技术的逐渐成熟,多智能体系统已成为人工智能一个热门研究方向。多智能体系统由分布式人工智能演变而来,其研究目的是解决大规模、复杂、实时和有不确定信息的现实问题,而这类问题是单个智能体所不能解决的。多智能体深度强化学习是解决多智能体问题的重要方法,但目前的多智能体深度强化学习方法主要针对只有数个智能体的环境,而在多智能体越来越庞大的环境中,智能体的策略变得更加重要也
“十四五”规划纲要提出,要加大对大数据,工业智能,区块链等新基础设施的投资,信息化程度将进一步加深。网络信息科技也随之提升,然而有的人却会利用技术对人们的隐私与财产安全带来巨大威胁。网络信息安全面临全新的,繁杂的挑战。入侵检测系统作为网络安全领域的一个重要组成,在面对异常入侵,用户误操以及内部攻击时提供及时的防护,所以研究入侵检测系统已经成为相关从业人员重点研究方向。近年来随着深度学习在语音识别、
在工业生产中安全是首要任务,但日益复杂的工业现场环境给安全生产带来了极大挑战。当前工业现场常用的安全监测方法有:基于人工的巡查方法、基于机器视觉三维成像的目标识别方法、基于卷积神经网络的目标识别方法。人工巡查的检测精度、频率和范围都是有限的,因此基于机器视觉三维成像和基于卷积神经网络的目标识别方法得到了广泛应用,并能够运用于极端恶劣环境中,但基于机器视觉的三维检测方法自动化程度仍然不高,往往需要辅
老年人口的快速增加是一个迫切的社会问题。近些年来,科研人员在研究如何能够让老人在家中安全养老付出过很多努力。研究发现,行为识别是判断一个人是否具有生活自理能力的重要评估方法。该方法通过监测老人的行为可以得知其认知水平和健康状况,并在必要时能够及时做出预警。这对于提高老人的健康水平和居家生活质量至关重要。然而,要想能够尽可能准确识别老人的行为,至少需要准确的数据、合适的特征和符合老人活动规律的模型。
无线传感器网络(Wireless Sensor Network,WSN)常被应用于灾害预警、医疗监测、工农业生产、国防军事等各个领域。在WSN中,一方面节点电池容量有限导致网络寿命有限,另一方面广播特性使得通信干扰严重、吞吐量低,这两点是制约WSN大规模部署的重要因素,然而这两个问题相重叠使得系统模型更为复杂。为了有效提高网络吞吐量、延长网络寿命,本文提出将串行干扰消除(Successive In
化工园区作为一个易燃、易爆、有毒重大危险源高度集中的区域,一旦发生火灾、爆炸或毒物泄漏扩散等事故,将造成一系列的连锁反应,并产生灾难性的后果。为此,利用大数据、人工智能等高新技术提高化工园区风险感知、监测预警、协同救援和应急处置的能力,已成为新发展格局下的重点领域之一。其中,化工园区应急物资分配是开展危化品事故应急救援的基础,是体现化工园区应急管理能力的一个基本要素。主要研究在危化品事故发生后,如
高分辨率SAR(Synthetic Aperture Radar)图像在卫星遥感、灾害监测等领域具有重要实际研究应用价值,但实际SAR成像分辨率往往难以满足应用需求。传统SAR图像超分辨率重建方法对模型和先验知识要求较高,重建效果往往不理想;无监督式生成对抗网络模型通过训练学习高低分辨率图像之间映射关系,减少先验知识依赖,重建图像效果明显优于传统方法,但博弈对抗式训练方法往往会使重建图像产生“伪影
互联网的迅速普及打破了信息传播的专业门槛,使得越来越多的人们可以通过社交媒体方便地获取信息、分享和表达观点,这极大的丰富了人们的日常生活。然而,由于社交媒体的用户数量巨大,出于各种目的捏造的虚假新闻层出不穷。再者,随着技术的进步,虚假新闻不再单纯的以文本的形式传播,更多是通过文本、图片和视频结合的方式进行扩散,极大地增强了虚假新闻的迷惑性,也使得以往仅仅依赖文本内容进行分析的虚假新闻检测方法不再适
随着人们对于自身安全以及公共安全的日益重视,视频监控系统遍布世界各地。海量的视频数据得以保存,如何快速地且智能化地分析和处理视频监控系统拍摄到的视频以及图像数据,是当下亟待解决的问题。作为智能监控系统中的一种不可或缺的技术,行人重识别(person Re-identification,Re-ID)受到了学术界的重视,其主要任务是在跨摄像头视域下匹配同一目标行人。近年来,随着深度学习技术的逐渐成熟,
遥感图像分割是理解遥感图像的基础,在防灾减灾、环境治理以及城市规划等领域有着重要作用。在过去,人们常常使用与图像分割有关的传统方法来处理遥感图像。传统的图像分割方法不管是在分割的精度还是分割的效率都是很低的。近年来,随着深度学习在计算机视觉领域的广泛应用,尤其卷积神经网络的在提取特征的显著优势,使得图像在分割的速度和精度上都得到了很大的提升。同时,基于深度学习的模型可以实现便捷的端到端的训练学习。