【摘 要】
:
无线传感器网络(Wireless Sensor Network,WSN)常被应用于灾害预警、医疗监测、工农业生产、国防军事等各个领域。在WSN中,一方面节点电池容量有限导致网络寿命有限,另一方面广播特性使得通信干扰严重、吞吐量低,这两点是制约WSN大规模部署的重要因素,然而这两个问题相重叠使得系统模型更为复杂。为了有效提高网络吞吐量、延长网络寿命,本文提出将串行干扰消除(Successive In
论文部分内容阅读
无线传感器网络(Wireless Sensor Network,WSN)常被应用于灾害预警、医疗监测、工农业生产、国防军事等各个领域。在WSN中,一方面节点电池容量有限导致网络寿命有限,另一方面广播特性使得通信干扰严重、吞吐量低,这两点是制约WSN大规模部署的重要因素,然而这两个问题相重叠使得系统模型更为复杂。为了有效提高网络吞吐量、延长网络寿命,本文提出将串行干扰消除(Successive Interference Cancellation,SIC)和无线能量传输技术(Wireless Energy Transmission,WET)引入WSN中构造了跨层优化问题并设计出工作策略。更进一步研究干扰管理策略,提出联合干扰对齐(Interference alignment,IA)与SIC技术辅助多入多出(Multiple Input Multiple Output,MIMO)自由度(Degree of Freedom,DoF)模型,三种技术进行优势互补,设计一种提高网络吞吐量的工作策略。本文的研究工作包括:(1)研究基于SIC的无线可充电传感器网络(Wireless Rechargeable Sensor Network,WRSN)吞吐量优化的问题。在WRSN中,由于每个节点的数据流量未知,因此节点的功率不是恒定的。但是如果无法预知接收信号功率,则SIC迭代解码过程将难以进行。为了解决这个问题,首先构造最小跳数路由,并统一传输速率以确定传输功率,继而获得时间片调度方案。随后提出一个优化问题,目的是在充电周期内最大化移动充电设备的休整时间,最后展示了一种可控制误差的近似解的求解方案。(2)研究基于联合IA和SIC的MIMO网络吞吐量优化的问题。基于对SIC和MIMO DoF模型的优缺点的理解,提出联合三种技术进行优势互补:1)通过IA和SIC消除大量干扰从而节省宝贵的DoFs资源;2)通过IC和IA使更多的信号在SIC迭代解码过程中达到严格的SINR阈值标准。本文开发了数学模型从而在多跳MIMO网络中实现这两个想法。结合链路调度和路由约束,本文针对多跳MIMO网络结合了IA和SIC,开发了一个跨层优化框架,以解决网络吞吐量最大化问题。仿真结果表明,IA和SIC的结合可以显著节省MIMO网络中各节点的DoFs资源,从而提高网络整体的吞吐量。
其他文献
传统的基于视觉的同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)技术不能获得周围环境的语义信息,无法满足机器人对自身周围场景的感知、理解和建模的需求。现有的大多数带有语义的SLAM方法要么假定周围环境是静态的,要么仅获取像素级别的语义信息,无法对环境中的每个物体进行实例级别的标识。这将导致机器人面临很多挑战,如无法完成人机交互、智能抓取、碰
随着现代信息技术的发展,万物互联的全新时代即将正式到来,基于物联网的智能家居方兴未艾。目前,大多数家用空调系统都是一对一单控制,无法远程监控空调的系统运行状态,发生故障后,售后人员只能凭大多数用户的非专业描述判断故障原因,很难快速定位并解决问题,新型智能空调已经成为传统空调系统升级换代的最佳选择。本文基于传统中央空调控制技术和物联网技术,设计了一款基于WiFi与阿里云物联网平台的智能空调控制系统。
随着工业4.0的发展,人们对产品质量特别是发光二极管(Light Emitting Diode,LED)表面质量的要求越来越高。在实际生产线上,LED表面缺陷检测技术是检测LED表面质量的关键环节之一,已成为近年来的研究热点。现有的研究大多适用于单光源检测环境,而在多光源检测环境中很难保证检测速度和检测准确率同时满足生产要求。本文基于多光源检测环境,研究LED表面缺陷检测技术,主要工作包括:(1)
随着传感器技术的发展,单一传感器模式逐渐发展为多种传感器模式。然而单一的图像传感器表示能力十分有限,往往不能从场景中提取足够的信息,多源图像融合技术应运而生,提高了图像解译的性能。其中,多光谱和全色图像融合作为近年来的研究热点,在一定程度上解决了多源数据综合分析的问题,促进了图像处理技术的发展。该技术以互补的方式利用了这两种成像方法的特点,有利于更加准确、可靠、全面地获取目标或场景信息。对于多光谱
现代工程结构日益大型化、轻柔化,其安全服役和动力灾变问题越来越突出。结构可靠度分析和结构健康监测是保障工程结构长期服役和安全运营的两个重要研究内容:一方面,结构可能直接承受作用强度远超其设计极限的极端自然灾害,导致结构体系失效,因此有必要对结构进行动力可靠度分析;另一方面,在漫长的服役期内,结构会因环境侵蚀和材料老化等因素的影响出现功能退化,致使服役性能不断下降,因此需要利用损伤识别等手段为结构安
近年来,神经网络已经应用在无人驾驶、医学、地质探测等各个领域。随着卷积神经网络的发展,从Le Net网络结构到VGG网络结构,网络越来越深,每层的规模也越来越大,随之而来的是计算量和参数量越来越大的问题。一般神经网络的训练计算由服务器端进行,再将训练好网络发送到终端进行推理计算,以满足终端的智能化需求。但该传输过程可能会造成用户一些隐私数据的泄露,缺乏安全性,同时终端也缺乏本地的自我训练调整的能力
随着科技的发展,以及人工智能领域各项技术的逐渐成熟,多智能体系统已成为人工智能一个热门研究方向。多智能体系统由分布式人工智能演变而来,其研究目的是解决大规模、复杂、实时和有不确定信息的现实问题,而这类问题是单个智能体所不能解决的。多智能体深度强化学习是解决多智能体问题的重要方法,但目前的多智能体深度强化学习方法主要针对只有数个智能体的环境,而在多智能体越来越庞大的环境中,智能体的策略变得更加重要也
“十四五”规划纲要提出,要加大对大数据,工业智能,区块链等新基础设施的投资,信息化程度将进一步加深。网络信息科技也随之提升,然而有的人却会利用技术对人们的隐私与财产安全带来巨大威胁。网络信息安全面临全新的,繁杂的挑战。入侵检测系统作为网络安全领域的一个重要组成,在面对异常入侵,用户误操以及内部攻击时提供及时的防护,所以研究入侵检测系统已经成为相关从业人员重点研究方向。近年来随着深度学习在语音识别、
在工业生产中安全是首要任务,但日益复杂的工业现场环境给安全生产带来了极大挑战。当前工业现场常用的安全监测方法有:基于人工的巡查方法、基于机器视觉三维成像的目标识别方法、基于卷积神经网络的目标识别方法。人工巡查的检测精度、频率和范围都是有限的,因此基于机器视觉三维成像和基于卷积神经网络的目标识别方法得到了广泛应用,并能够运用于极端恶劣环境中,但基于机器视觉的三维检测方法自动化程度仍然不高,往往需要辅
老年人口的快速增加是一个迫切的社会问题。近些年来,科研人员在研究如何能够让老人在家中安全养老付出过很多努力。研究发现,行为识别是判断一个人是否具有生活自理能力的重要评估方法。该方法通过监测老人的行为可以得知其认知水平和健康状况,并在必要时能够及时做出预警。这对于提高老人的健康水平和居家生活质量至关重要。然而,要想能够尽可能准确识别老人的行为,至少需要准确的数据、合适的特征和符合老人活动规律的模型。