基于射线追踪的遮挡空间无线信道特性分析

来源 :山东大学 | 被引量 : 0次 | 上传用户:cdwkevin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近二十年来,无线通信技术有了质的飞跃,2G、3G等蜂窝移动通信网络技术已经慢慢淡出人们的视野,4G网络普及的同时,2019年第一个5G商用网络成功部署,随后5G网络也如雨后春笋般破土而出。国际电联组织的5G商用频谱范围可划分为Sub6GHz和毫米波频段。目前国内5G网络所采用的频段仍然是Sub6GHz频段,而毫米波段的研发、测试和应用也在稳步开展。5G网络主要部署场景包括室内热点、市区宏蜂窝、市区微蜂窝和郊区宏蜂窝。在室内场景中,几种特殊遮挡空间(如楼梯井和地下车库)的电波传播特征尚缺少足够认识,需要开展相关研究。
  无线通信中信号以电磁波形式在无线信道中传播,在进行无线通信系统设计和无线网络规划时,需要准确了解环境中信号的传播特性。无线信道模型能够有效描述无线通信环境的传播特征,可用于系统优化设计和性能评估,对无线通信(包括5G移动通信)研究至关重要。
  本文主要基于射线追踪技术对两个特殊室内场景的无线信道进行特性分析,主要研究工作如下:
  (1)研究楼梯井环境60GHz毫米波频段的信道特性。搭建了楼梯井环境仿真模型,使用Wireless Insite获得信道数据;分析了发射端在不同高度时平均功率时延谱随接收端移动的变化趋势;分析了信道路损和路损指数,对阴影衰落、时延扩展、角度扩展以及莱斯K因子等大尺度参数进行了拟合,得到其对数均值和方差;计算了各大尺度参数之间的相关系数和参数本身去相关距离;给出了两种64阵元线性阵列在不同发射端高度和天线单元间隔处的空间相关系数。
  (2)研究大频率范围内地下车库环境Sub6GHz频段信道传播特性。搭建了地下车库仿真场景,使用Wireless Insite获得信道数据;在3.5GHz频段,采用上述楼梯井环境相同研究方法,获得大尺度参数等信道特性参数;以500MHz为间隔仿真获得Sub6GHz连续频段的信道数据,分析了材料特性对无线电波信号传播的影响,研究了路径损耗、时延扩展、角度扩展等信道参数对频率的依赖性。
  (3)研究信道分簇算法及簇内射线统计参数计算方法。利用KPowerMeans分簇算法,结合多径分量距离和分数融合估计指标,对上述两种场景的信道数据进行了分簇处理;研究了簇的分布特征,并分析了簇的传播机制,计算了关于簇的时延扩展和角度扩展等簇内射线统计参数。
  
其他文献
基于图像的人体行为识别是将计算机视觉和人工智能相结合实现人体行为识别的一种智能化技术,其已广泛应用于特殊人群监护、人机交互等领域,并已成为人工智能的研究热点之一。  目前,基于图像的人体行为识别技术的研究主要基于单分类器,通过优化特征信息、改进识别算法来实现。其虽然取得了很多研究进展,但在模型的通用性和准确率的提升方面仍存在研究瓶颈。单个分类器通常只针对训练好的几种行为的识别效果好,行为种类变化后
学位
近年来,随着可穿戴设备的增多以及互联网技术的发展,人与人之间的信息交互方式发生了巨大改变,由于图像、视频等多媒体数据具有更加形象生动的特征,所以可以更好地满足广大智能媒体用户的需求。然而,随着多媒体数据的爆发式增长,导致了一系列信息检索与空间存储问题。  视频摘要技术利用计算机自动地从原始长视频中提取关键的图像帧或视频片段作为重点摘要内容,使得摘要后的视频总时长缩短,同时还能够将用户认为的重要内容
学位
工业技术在国家综合生产能力体系中占有举足轻重的地位,工业和制造业的发展是一个国家经济实力的重要体现。近年来,随着我国工业化进程的加快和中国“智能制造2025”的推进,工业互联网成为重要的网络基础设施,众多新型工业计算密集型应用也开始涌现,如工业目标检测(Object Detection),人脸识别(Face Recognition),多媒体(Multimedia)传输等等。同时,伴随移动互联网和无
学位
双目视觉技术在计算机视觉领域中仍然属于较火热的研究课题,其在三维重建、机器人实时导航以及自动驾驶中有着广泛的应用。立体匹配在双目视觉中具有举足轻重的地位,其匹配结果的精度将直接影响最终视差图的精度,因此提高双目视觉中立体匹配的精度对促进双目视觉技术的发展有着重要意义。本文主要研究了如何将卷积网络应用在立体匹配中,并改进了网络结构和后处理方法,提高了算法性能,本文主要工作分为以下方面:  (1)对双
三维点云因其强大的三维空间表征能力,近年来被广泛应用于如自动驾驶、数字博物馆、机器人、医学等领域。三维点云是可由三维扫描设备或摄像机等获取到的能够描述物体表面特征信息的由海量点组成的集合,每个点一般包含几何位置及颜色信息,且点和点之间不存在拓扑关系,没有顺序,因此能否通过有限的网络带宽快速的将三维点云数据传输到用户终端中是解决三维点云数据能否实地使用的先决条件,如何有效的对点云数据进行压缩成为解决
学位
随着智能手机的普及以及物联网的兴起,移动设备数量以前所未有的速度增长。人们对于无线网络的速度和质量有了更高要求,现有的网络通信技术已无法满足人们的需要。具有高可靠性、低时延、高吞吐量等特性的第五代移动通信技术,极大满足了万物互联时代的通信需求。毫米波通信作为5G的关键技术之一,极大地缓解6GHz以下即将耗尽的频谱资源。然而毫米波在传输过程中有着严重的路径损耗,为了使得毫米波实现几百米范围内的通信,
学位
广域网(Wide Area Network,WAN)作为将不同地域的网络系统连接起来的远程网络,在整个计算机网络的体系中扮演着重要的角色。近年来,各种新的网络应用呈现井喷式发展,网络流量持续增长,传统的网络流量调度方法难以满足当前的网络需求。软件定义网络(Software Defined Network,SDN)架构的出现为网络优化打开了新窗口。通过将控制平面集中起来,获取全网视图,可以对流量进行
随着5G万物互联时代的到来,移动通信业务量呈现出爆炸性的增长趋势,多输入多输出-正交频分复用(Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing,MIMO-OFDM)技术由于能够显著提高频谱效率和增强系统可靠性而被广泛研究。信号在无线信道传输时会受到多径衰落、多普勒扩展、加性高斯白噪声(Additive
在信号处理中,滤波器可以用来提取或去除信号中的某些频域成分。由于易于设计实现,应用起来便捷高,数字滤波器被广泛的应用到各种信号处理领域。在一些数字信号处理领域,如数字通信系统中的信号处理、音频信号处理、生物医学信号处理等,需要具有可变频谱特性的滤波器对信号频谱进行动态的操作。这些种滤波器的实现离不开具有可变带宽的可变滤波器。较宽的带宽可变范围,较低的复杂度,灵活的参数控制是可变滤波器的设计目标。 
近年来,深度学习在计算机视觉领域取得了前所未有的成功。目前绝大多数的应用都深度依赖于大量的标签数据,这极大限制了深度神经网络的适用性。与主流的神经网络训练方法不同,一个普遍的共识是人脑的学习主要以无监督的方式进行,而监督信息则通过反馈的方式强化神经学习。尽管我们并不完全理解人脑的工作机制,但我们的目的是探索像人脑一样无监督学习的方式,它可以从大量无标签视觉内容中自动提取丰富的抽象特征,提升智能视觉
学位