论文部分内容阅读
面对国际铁矿石价格不断上涨带来的成本压力,开采国内贮量丰富的高磷铁矿已经成为我国钢铁企业走可持续发展道路的重要选择。转炉双联冶炼工艺是一项高效脱磷的现代钢铁生产新工艺,为冶炼高磷铁矿提供了一项重要途径。该工艺流程中脱磷转炉体系温度低,冶炼周期短,为达到高效脱磷的目的,同时考虑到高磷渣的综合利用,石灰在高磷、无氟、低碱度初期渣中的快速溶解形成具有良好脱磷能力的炉渣起着关键作用,目前这方面的研究相对较少。为此,本文针对双联法冶炼中高磷铁水工艺流程的特点,开展双联法脱磷炉中石灰溶解行为研究,对于优化转炉双联脱磷工艺,促进脱磷转炉快速成渣具有一定的理论指导意义。本文采用高温静态溶解试验法和动态旋转试验法研究了熔渣组成、温度、相对速度对石灰在高磷渣中的溶解行为的影响,分析了石灰溶解的限制性环节,并借助矿相显微镜及扫描电子显微镜(SEM+EDS)观察分析了石灰溶解过程微观界面行为,探讨了石灰的溶解机理,主要研究成果如下:①采用正交组合设计方法研究了R、Fe2O3、P2O5、Al2O3和Na2O对石灰溶解行为的影响,得出石灰溶化率与组分的关系,认为高磷渣不利于石灰的溶解。②在FetO-SiO2-CaO-P2O5-5%MnO-5%MgO系高磷渣中,CaO在液相中的传质是石灰溶解的限制性环节,回归出石灰溶解速度与相对速度的关系式以及j因子方程,得到CaO的传质系数为3.03×10-4-8.97×10-4cm/s,并通过实验获得石灰溶解活化能约为160.32 kJ/mol。③在FetO-SiO2-CaO-P2O5-5%MnO-5%MgO-X渣系中,添加剂CaF2、Na2O、Al2O3对石灰溶解促进作用顺序为:CaF2>Na2O>Al2O3,从高磷渣综合利用方面考虑,可以采用Na2O和Al2O3作为CaF2的替代剂使用,但用量应加以限制。④基于对石灰在高磷渣中溶解机理分析,认为石灰基体表面附近形成的(Fe,Mn)O-CaO层是促进石灰溶解的关键所在,而(Fe,Mn)O-CaO层外的含有3CaO·P2O5 -2CaO·SiO2固溶体的固液共存区域则对石灰的溶解起到抑制作用。