Evaluating Manufacturing Energy Consumption for a Part Using Geometry

来源 :湖南大学 | 被引量 : 0次 | 上传用户:jiahong222
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在设计过程中做出的决策对零件的制造有重大影响。除了技术和功能要求,设计师还权衡了设计几何、材料和规格对能源消耗的影响。由于大部分零件的可持续性影响是在设计过程中确定的,因此工程师在整个设计过程中考虑可持续性是很重要的。评估设计可持续性的现有工具没有考虑设计的几何复杂性,也很少为工程师改进设计提供指导。基于更复杂的设计将需要更多的资源来制造的概念,本文提出了一种新的方法来评估制造阶段的能源消耗。本论文的主要目的是提出一个工具的框架,可以指导工程师进行更可持续的设计。新的可持续性评估工具应分析设计几何图形(即CAD文件)的复杂性,以便预测其在制造过程中的能耗。由于开发刀具的第一步是研究影响零件制造能耗的主要几何因素,因此本文研究了设计几何对数控加工能耗的影响。这项研究发现,高达98%的能源消耗的变化,在加工过程中的一个部分可以预测使用其几何特征。事实上,设计的长度、可达性得分和边界体积解释了高达75%的能耗变化。研究还发现,半精加工和球磨操作占加工总能耗的四分之三以上。研究结果可用于预测给定部件几何形状的相对制造能耗。这可以进一步完善,以开发一种工具,可以指导工程师进行更可持续的设计。本文提出的模型可以作为开发一个工具的跳板,该工具可以从CAD文件中分析设计几何,向设计工程师提供反馈,并指导他们进行更可持续的设计。根据本研究的结果,该工具应使用一个评估模型,该模型除了考虑最终零件体积和移除体积外,还应考虑几何特征,如表面积、尺寸和可达性。
其他文献
随着化石能源逐渐耗尽、地球环境日渐恶化,人们急需发展环保且可持续的新能源及相应的能量存储设备。超级电容器因具有功率密度高、工作寿命长等优势,在储能设备中占有不可替代的地位。随着便携式电子设备的飞速发展,柔性可穿戴超级电容器在便携式设备的储能领域具有极大的应用前景。如何使超级电容器同时具有良好的柔性和储能性能,是目前研究中亟需解决的问题。发展柔性超级电容器的关键在于柔性电极的制备,本论文选择廉价、易
我国岛礁、高原等偏远地区由于地理位置特殊,铺设高压远距离输电线路与大陆电网互联面临建设难、成本高等难题。由柴油发电机和储能装置作为能量核心支撑,光伏灵活接入构建的三端口能量路由器,既能解决柴油发电单一供电的不足,又能联合各类微源配置接口灵活的多能源微电网。基于直流母线的三端口能量路由器具备成本低、无需考虑频率和相位及无功补偿设备等优势,有利于直流用电负荷灵活高效挂网运行,已成为建设偏远地区高可靠、
密度泛函理论(Density Functional Theory,DFT)获1998年诺贝尔化学奖,是计算原子尺度微观过程的重要方法,广泛应用于物理、化学、生物、制药、半导体设计等众多科技领域。然而,由于DFT计算开销大,导致基于DFT的微观原子运动计算耗时极长。例如,使用8个CPU核的服务器(具体配置:Intel CPU 2680V2),并行计算仅含有12个原子的苯环分子20皮秒(皮秒:10-1
钾离子电池由于钾资源丰富、能量密度高等特点,是锂离子电池的潜在替代者。电解质作为电池中主要的组分之一,对于电池的电化学性能有着重要影响。因此,研究电解液体系及其组分类型、盐的浓度等因素对钾离子负极材料性能的影响对于钾离子电池未来的商业化进程具有重大意义。本论文以双氟磺酰亚胺钾盐(KFSI)与酯类、醚类溶剂为基础,分别开发了一系列新型电解液,将其应用于基于碳基负极材料及金属氧化物负极材料的钾离子电池
随着新能源汽车的逐渐普及、国家相关法规与补贴政策的逐渐完善,以及人们对于车辆性能与安全性需求的不断提升,新一代新能源汽车产业得到了迅速发展。新能源汽车上智能化和高密度的电子元器件,使得其电控系统也因此具备传导功率大,瞬时超大电流的特点。但是也这对新能源汽车电流传输、以及热传输用的铝基覆铜板材料提出了更高的要求,覆铜板材料必须具有良好的导热性能和耐高压能力,否则热量容易在局部地区积累,会严重危害到器
随着现代化和新型城镇化的大力推进,地铁作为城市主要的出行方式,近年来得到了蓬勃发展,我国已成为拥有地铁运营城市最多和线路最长的国家。地铁屏蔽门作为地铁运营的核心设备,通过屏蔽站台以保障运营安全、节约能耗,对地铁运行的安全性、舒适性、经济性、准时性起到极为重要的作用。因此对地铁屏蔽门系统的可靠性和维修性进行分析与提高,具有重要的意义和工程应用价值。论文以J市地铁5号线运行过程的故障数据和维修数据为基
近年来,全世界开始注重环境与不可再生资源问题,使用绿色能源也越来越受到人们的关注。由于连接到电网的整流负载会引起输入电流波形失真,从而使高次谐波电流注入电网,降低了电网的稳定性和可靠性;因此,有源功率因数校正电路是许多电气设备的必要环节,也符合绿色能源的核心要求。由于目前APFC电路拓扑电路繁多,且升压型及其改进型APFC电路被大家集中改进。基于大量文献,针对降压型APFC电路被人们研究较少的现状
DNA作为一种遗传物质广泛用于遗传学相关的研究。具有独立结构及特定非遗传生物学功能的核酸的发现和DNA纳米技术的发展,使得DNA作为一种功能材料广泛应用于生物传感、药物递送等领域。随着对DNA链取代反应研究的深入,动态DNA纳米结构成为了一种十分强大的工具。研究者基于DNA动态纳米结构可设计出复杂的网络行为来操纵分子层面物质的时空分布。细胞行为的调控大多是通过对细胞膜表面受体或配体进行控制实现的,
众所周知,传统的纳米颗粒(Nanoparticles,NPs)电化学是在宏观尺度下考察纳米颗粒聚集体的平均电化学行为,然而颗粒间的异质性与不可忽略的相互作用使得常规方法无法精准获取单个纳米颗粒的电化学本征信息。单颗粒碰撞电化学作为近年来快速发展的电化学分析新方法,能够在微纳尺度下对单个纳米颗粒进行电化学表征和分析,这对揭示纳米限域尺度下的物化性质与过程具有重大科学意义。本论文首先在第一章中对单颗粒
功率放大器是实现射频和微波系统的关键部件,如何优化功放的各项性能一直以来都是研究的焦点。一方面,射频功率放大器一般是通信系统中功耗最高,体积最大的模块,其性能直接影响了整个射频系统的工作成本,而高效率的功放可以减少功率损耗,降低散热要求,从而降低成本。另一方面,随着现代通信技术的发展,出现了越来越多的先进无线频带标准,要求通信系统能够同时在多个频率上工作,因此多频带功率放大器的设计也越来越受到人们