论文部分内容阅读
选择性催化氧化是工业生产中广泛应用的一种制备含氧化合物的重要方法,传统的催化剂大多数是可溶性金属盐类,氧化剂主要为高价态的氧化物,如重铬酸盐、高锰酸钾等。由于这些催化剂和氧化剂在生产过程中诞生大量有毒废液和废料,给环境带来污染。钛硅分子筛催化剂TS-1的诞生,钛活性中心可以活化双氧水,实现选择性氧化,克服了传统氧化工艺中污染严重的缺点,开启了绿色氧化生产工业的新纪元。
虽然TS-1催化剂具有优异的催化性能,但是其较小的微孔孔径(大约0.55nm)限制了其在大分子催化氧化的应用。针对大分子催化的需求,发展了较大微孔分子筛的制备方法,一系列的大微孔和超大微孔钛硅分子筛制备出来,但是孔径很难突破1.0nm。钛硅介孔分子筛成功合成突破了微孔的限制,实现了2~50nm孔径大小可调节,同时具有规整多变的介观结构和较高的比表面积等优点,在大分子催化中表现出优越的性质。目前报道的制备方法,钛硅介孔分子筛的颗粒普遍较大,钛含量较低,影响催化性能,如何制备纳米尺度的、高钛含量和高比表面积的钛硅介孔分子筛仍然是一个挑战性的课题。本论文致力于活性钛含量、高比表面积、纳米尺度的钛硅介孔分子筛的设计合成和大分子催化应用研究,主要分以下三部分内容:
(1)采用氨基酸为添加剂,通过优化条件,合成了一系列不同尺寸、不同形貌、不同钛含量的钛硅介孔分子筛。所制备的钛硅介孔分子筛颗粒大小30nm~500nm可调,钛含量从0.08%到100%可调。研究发现合成体系的钛含量对介孔结构、形貌、钛的配位状态和催化性能有着巨大影响,具体如下:
①随着钛含量的增加,介孔有序度会有所提高,随后降低直到介孔消失;在Si/Ti≥1的范围,都有一个1.7~2.9nm的介孔分布峰,而Si/Ti≤1的范围,没有规整的介孔峰分布出现。
②所制备的样品的形貌,在Si/Ti≥30的范围内,属于分散的纳米球形形貌,在Si/Ti=20-10的范围内,属于微米球形形貌,当Si/Ti≤2范围内,为无规则的颗粒形貌。
③Si/Ti为1000的样品,几乎全部是210nm的吸收峰,为活性钛物种;Si/Ti在200~20范围内,以四配位钛物种为主,有少量的六配位钛物种,Si/Ti为10~2范围,四配位和六配位钛为主,含有很少的二氧化钛结晶小颗粒;在Si/Ti≤1范围内,三种状态的钛物种同时存在。
④随着钛含量增加,环己烯的转化率不断提高,最高转化率的样品为Si/Ti=2,转化率为30.2%,随后转化率急剧下降。产物分布来看,随着钛含量增高,环氧环己烷的选择性逐渐下降,多数的产物为环氧化己烷的水解衍生物1,2-环己二醇。产物的分布中,大约70~80%的1,2-环己二醇,~10%的烯丙位氧化产物和~10%的过度氧化产物。同时发现,样品中含有二氧化钛小颗粒,会导致双氧水的分解,降低双氧水的利用效率。
(2)基于氨基酸为添加剂制备纳米尺寸钛硅介孔分子筛合成体系,系统地研究了碳酸铵对钛硅介孔分子筛的形貌、钛状态和介孔结构的影响。通过XRD,SEM,ICP和氮气吸附表征,发现碳酸铵的引入对介孔结构、形貌、钛的配位状态和催化性能有着较大影响,具体如下:
①碳酸铵的引入,可以降低非活性六配位钛物种含量和增加比表面积,有利于烯烃环氧化反应。
②碳酸铵的引入,将降低合成体系的pH值,引起纳米粒子的聚集,形成较大的颗粒团聚体,不利于大分子反应物的扩散,降低催化活性。
③引入碳酸铵所制备的钛硅介孔分子筛,以过氧叔丁醇为氧化剂,应用于β-石竹烯环氧化反应,表现出较高的活性,转化率可达90%以上,选择性80%以上。
(3)以聚合物和表面活性剂双模板合成多级孔结构的钛硅介孔分子筛Ti-HSMS。Ti-HSMS包含有孔径较大的无序次级纳米孔(20nm左右)和有序规则的介孔孔道(3nm),其中,纳米孔是以酸性聚丙酸电解质和CTAB为复合模板形成的,而有序的规则小孔则是仅以阳离子表面活性剂CTAB为模板通过自组装形成的。引入的次级纳米孔在一定程度上可以强化催化剂的物质传输能力,有利于反应底物与催化剂活性位点的高效催化结合,提高对大分子反应底物的催化效果。
探究了Ti-HSMS,传统单一介孔的钛硅介孔分子筛分子筛Ti-MCM-41以及微孔钛硅分子筛TS-1在催化环己烯氧化催化性能,催化实验结果数据表明:
①所制备Ti-HSMS在无水有机的环境中发挥出良好的催化效果,而使用过氧化氢的水溶液作为氧化剂,将会导致催化剂的转化率和选择性急剧下降,因此,尽量不要选择水相反应条件来进行催化烯烃环氧化反应。
②催化转化的钛活性位点主要存在于催化剂内部孔道,只有极少量分布于催化剂的表面。
③孔径较大的钛硅介孔分子筛有利于催化有机大分子烯烃环氧化。
④不同钛含量催化剂的催化活性的差异证明了骨架钛是催化烯烃环氧化的反应活性中心。
虽然TS-1催化剂具有优异的催化性能,但是其较小的微孔孔径(大约0.55nm)限制了其在大分子催化氧化的应用。针对大分子催化的需求,发展了较大微孔分子筛的制备方法,一系列的大微孔和超大微孔钛硅分子筛制备出来,但是孔径很难突破1.0nm。钛硅介孔分子筛成功合成突破了微孔的限制,实现了2~50nm孔径大小可调节,同时具有规整多变的介观结构和较高的比表面积等优点,在大分子催化中表现出优越的性质。目前报道的制备方法,钛硅介孔分子筛的颗粒普遍较大,钛含量较低,影响催化性能,如何制备纳米尺度的、高钛含量和高比表面积的钛硅介孔分子筛仍然是一个挑战性的课题。本论文致力于活性钛含量、高比表面积、纳米尺度的钛硅介孔分子筛的设计合成和大分子催化应用研究,主要分以下三部分内容:
(1)采用氨基酸为添加剂,通过优化条件,合成了一系列不同尺寸、不同形貌、不同钛含量的钛硅介孔分子筛。所制备的钛硅介孔分子筛颗粒大小30nm~500nm可调,钛含量从0.08%到100%可调。研究发现合成体系的钛含量对介孔结构、形貌、钛的配位状态和催化性能有着巨大影响,具体如下:
①随着钛含量的增加,介孔有序度会有所提高,随后降低直到介孔消失;在Si/Ti≥1的范围,都有一个1.7~2.9nm的介孔分布峰,而Si/Ti≤1的范围,没有规整的介孔峰分布出现。
②所制备的样品的形貌,在Si/Ti≥30的范围内,属于分散的纳米球形形貌,在Si/Ti=20-10的范围内,属于微米球形形貌,当Si/Ti≤2范围内,为无规则的颗粒形貌。
③Si/Ti为1000的样品,几乎全部是210nm的吸收峰,为活性钛物种;Si/Ti在200~20范围内,以四配位钛物种为主,有少量的六配位钛物种,Si/Ti为10~2范围,四配位和六配位钛为主,含有很少的二氧化钛结晶小颗粒;在Si/Ti≤1范围内,三种状态的钛物种同时存在。
④随着钛含量增加,环己烯的转化率不断提高,最高转化率的样品为Si/Ti=2,转化率为30.2%,随后转化率急剧下降。产物分布来看,随着钛含量增高,环氧环己烷的选择性逐渐下降,多数的产物为环氧化己烷的水解衍生物1,2-环己二醇。产物的分布中,大约70~80%的1,2-环己二醇,~10%的烯丙位氧化产物和~10%的过度氧化产物。同时发现,样品中含有二氧化钛小颗粒,会导致双氧水的分解,降低双氧水的利用效率。
(2)基于氨基酸为添加剂制备纳米尺寸钛硅介孔分子筛合成体系,系统地研究了碳酸铵对钛硅介孔分子筛的形貌、钛状态和介孔结构的影响。通过XRD,SEM,ICP和氮气吸附表征,发现碳酸铵的引入对介孔结构、形貌、钛的配位状态和催化性能有着较大影响,具体如下:
①碳酸铵的引入,可以降低非活性六配位钛物种含量和增加比表面积,有利于烯烃环氧化反应。
②碳酸铵的引入,将降低合成体系的pH值,引起纳米粒子的聚集,形成较大的颗粒团聚体,不利于大分子反应物的扩散,降低催化活性。
③引入碳酸铵所制备的钛硅介孔分子筛,以过氧叔丁醇为氧化剂,应用于β-石竹烯环氧化反应,表现出较高的活性,转化率可达90%以上,选择性80%以上。
(3)以聚合物和表面活性剂双模板合成多级孔结构的钛硅介孔分子筛Ti-HSMS。Ti-HSMS包含有孔径较大的无序次级纳米孔(20nm左右)和有序规则的介孔孔道(3nm),其中,纳米孔是以酸性聚丙酸电解质和CTAB为复合模板形成的,而有序的规则小孔则是仅以阳离子表面活性剂CTAB为模板通过自组装形成的。引入的次级纳米孔在一定程度上可以强化催化剂的物质传输能力,有利于反应底物与催化剂活性位点的高效催化结合,提高对大分子反应底物的催化效果。
探究了Ti-HSMS,传统单一介孔的钛硅介孔分子筛分子筛Ti-MCM-41以及微孔钛硅分子筛TS-1在催化环己烯氧化催化性能,催化实验结果数据表明:
①所制备Ti-HSMS在无水有机的环境中发挥出良好的催化效果,而使用过氧化氢的水溶液作为氧化剂,将会导致催化剂的转化率和选择性急剧下降,因此,尽量不要选择水相反应条件来进行催化烯烃环氧化反应。
②催化转化的钛活性位点主要存在于催化剂内部孔道,只有极少量分布于催化剂的表面。
③孔径较大的钛硅介孔分子筛有利于催化有机大分子烯烃环氧化。
④不同钛含量催化剂的催化活性的差异证明了骨架钛是催化烯烃环氧化的反应活性中心。