Fe、Co原子纳米线与石墨烯混合系统电子结构和磁性的第一性原理研究

被引量 : 0次 | 上传用户:fllmn2585
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
石墨烯(graphene)是由单层C原子组成的二维蜂窝网状晶格,是一种具有sp2杂化的、能隙为零的非磁性半导体材料.由于其独特的结构和性质,石墨烯在高性能纳米级电子器件、复合材料、场发射材料、气体传感器及能源等领域具有巨大的应用潜能.本文利用基于密度泛函理论的全势线性缀加平面波方法结合广义梯度近似,研究了Fe、Co原子纳米线与石墨烯混合系统的电子结构和磁性.我们在石墨烯上方吸附一条磁性金属(Fe、Co)原子纳米线,吸附于石墨烯上方的磁性金属纳米线中的每个金属原子都位于石墨烯六角环中心位置的正
其他文献
迄今合成超重核的研究已取得了很大的成就。实验上,GSI利用重离子冷熔合反应合成超重元素取得了巨大成功,Dubuna也利用热熔合反应对更重的元素合成作了探讨。理论上已经建立了
过去人们在研究磁性纳米体系输运时通常只考虑共线磁结构的情况,然而在真实的物理体系中总是会出现非共线的磁结构。最近的研究结果揭示了非共线体系中出现的许多新现象,例如电
ANKE谱仪是位于冷却储存环COSY上的一个内靶实验终端,在它的针对物理目标中,研究靠近KK产生阈的共振态α0(980)/f0(980)是一个主要的内容。在通过强相互作用反应对α0/f0进行测
依据声子晶体研究现状及其基本理论知识,深入研究了二维声子晶体的带隙特性,讨论并总结了组元材料、几何参数、点阵结构等因素对二维声子晶体带隙特性的影响规律。结合减振降噪
自从Goppert-Mayer和Haxel六十多年前首次将自旋轨道耦合作用引入到壳结构模型中并成功解释了核子的幻数结构,人们才逐渐意识到自旋轨道耦合在核核相互作用中的重要意义。虽然
自20世纪后半页兴起的信息技术极大地改变了我们的生活,半导体工业和微电子技术是信息技术发展的基础。近年来,科学家意识到微电子技术的继续发展会受到量子力学效应的限制,这导
稀土永磁材料和磁致冷材料由于具备广泛的应用价值一直都是材料研究的热点。本文通过X射线粉末衍射、中子衍射、磁性测量等方法对多型性Pr5Si2Ge2化合物、La1-xYxMn2Si2化合
我们采用激光分子束外延技术生长了La0.9Sr0.1MnO3、BiFeO3和La0.8Sr0.2AlO3等薄膜材料,制备了 La0.9Sr0.1MnO3/Nb-SrTiO3、 BiFeO3/La0.7Sr0.3MnO3和La0.8Sr0.2AlO3/SrTiO3等
上转换纳米颗粒(Upconversion nanoparticles,UCNPs)代表一种相对新型纳米荧光材料,其高稳定性、无毒无害、分辨率高、无自荧光以及生物相容性好等优异性能使其在生物标记、生
电流诱导的自旋转矩是当今自旋电子学研究的前沿课题。磁电电路理论能够方便地处理扩散输运占主导地位的纳米结构中自旋转矩的问题,其中界面的自旋相关电导等参量的独立确定是