论文部分内容阅读
对六种不同成分的Ti1-xMox(x=0.05、0.10、0.15、0.20、0.25、0.33)合金样品进行充放氢试验,制备得到室温下的不同氢含量的一系列Ti-Mo合金氢化物。采用X射线粉末衍射和TEM进行了物相分析和形貌观察。室温下,在氢含量范围为H/M=0.9~1.7时观察到bct结构的ε氢化物,这在高温下没有观察到。Ti-Mo-H体系中的ε相不同于Ti-H系中的三种体心四方相,是一种新的氢化物相。基于大量的X射线衍射数据,确定了该Ti-Mo合金氢化物相的合金基体晶格结构,讨论了体系退火脱氢过程中的相变情况,分析了ε相Ti-Mo合金氢化物的形成条件及其晶格常数随着Mo含量和H含量的变化。
采用中子散射和X射线衍射研究了ε相Ti0.85Mo0.15D1.56不饱和氘化物的精细结构,包括氘原子的占位情况。Rietveld拟合过程中采用双ε相模型和△α/α微观应变模型拟合了衍射峰形的异常宽化,确定了样品中的氢含量分布不均匀性和最大微观应变的方向和大小。在对四方结构晶体的Rietveld拟合中引入了位错各向异性峰形展宽模型,对Ti0.85Mo0.15D1.56的中子衍射谱的峰形各向异性宽化进行了拟合,推测样品中的微观应变是由于大量的c<001>{110}位错缺陷引起的。根据δ相和ε相Ti—Mo合金氘化物的晶体结构分析了δ-ε相变的晶体学关系。
总结了Ti-Mo-H体系中δ-ε相变的规律,提出随着氢含量的变化相变起始温度Tb呈抛物线变化的观点。基于第一原理密度泛函理论计算了不同氢含量的Ti0.75Mo0.25合金氢化物稳态结构下的fct晶胞轴比c/α,并从总能量变化角度解释了Tb的抛物线型变化。根据电子能带结构得出费米面附近的能带分裂并非δ-ε相变的根本原因的结论。分析了Tb抛物线顶点Tc和体系外层电子浓度的关系,提出了Tc的位置和大小与体系中外层d、s电子的浓度有关的猜想。
在10-300K范围内的不同温度下对零基合金饱和氘化物Ti0.67Mo0.33D1.83进行了中子衍射测试,通过Rietveld拟合得到不同温度下D原子的原子位移参数B,并间接求得体系体膨胀率;基于第一原理密度泛函理论计算得到体系的Debye温度。基于试验数据和理论计算结果,分析了氘化物晶体中D原子亚晶格和合金基体晶格间的热振动关系,计算了晶体中的静态无序原子位移参数,并对Ti0.67Mo0.33D1.83氘化物晶格振动的非简谐效应进行了分析。建立了多原子晶体中根据Debye温度和某一原子的位移参数确定各原子位移参数间的关系的方法,同时指出了根据原子的位移参数确定多原子晶体中不同原子间相对振动关系的可能性。