论文部分内容阅读
近年来,我国的工业发展日益迅猛,导致了大量废水的排放,其中含酚废水和含铬废水是两类主要的工业废水。厌氧生物处理法以其绿色、经济、方便的优点被普遍应用于工业废水的处理中。理论上苯酚的氧化和六价铬的还原可以通过厌氧微生物活动构成一个完整的全反应,无需投入额外的碳源和电子受体;但是苯酚和六价铬的毒性会对彼此功能菌产生相互抑制,因此限制了这两类废水在生物法中的同步处理。生物电化学系统(BES)结合了厌氧生物处理法与电化学法,因其可以产生电能和降解污染物受到广泛关注。生物电化学系统可以将两个半反应在空间上进行分离,因此它可能是实现苯酚和六价铬同步去除的有效方式。此外,由于大多数的电活性细菌无法直接利用苯酚,因此推测苯酚等难降解污染物的阳极氧化可能依赖着发酵细菌和电活性细菌之间的协同作用。本论文首次构建了双生物电极的双室微生物电解池(MEC)以实现含酚废水和含铬废水的同步处理;并在苯酚-铬MEC的研究基础上,对苯酚阳极氧化过程机理进行了初步探究。主要研究结果如下:(1)构建了苯酚氧化耦合六价铬还原的苯酚-铬MEC,在苯酚浓度为100 mg/L、六价铬浓度为20 mg/L的初始条件下驯化,最终实现了苯酚-铬MEC的稳定运行,可以有效处理5001000 mg/L的含酚废水和100200 mg/L的含铬废水。从驯化阶段到稳定阶段,苯酚和六价铬的去除效果逐渐增强,外电路电流呈现明显的增长趋势,阳极的库仑效率也相对提高。实验结束后,对阴极污泥进行的XPS和SEM分析证实了阴极生物还原六价铬的过程。MEC的驯化促进了相关微生物的生长,阳极的电活性细菌Clostridiumsensustricto1和阴极的六价铬还原菌Aquamicrobium、Trichococcus等功能微生物得到了明显富集。(2)在苯酚-铬MEC的基础上,对苯酚阳极氧化的机理进行了初步探究,并推测苯酚降解细菌和电活性细菌之间的互养代谢可能是苯酚阳极氧化过程的关键。分别构建了以苯酚和乙酸为单一碳源的混菌MEC进行对照,结果发现,在阴极还原六价铬方面,苯酚作为阳极碳源比乙酸更有效,因为苯酚降解细菌可以降解苯酚并缓慢释放乙酸,低浓度的乙酸作为电子供体可以更充分地被用于阳极氧化过程中。在苯酚阳极液中,群体感应信号分子的浓度比在乙酸阳极液中更高,这证实了苯酚降解细菌和电活性细菌之间的互养代谢关系。循环伏安法和傅立叶变换红外光谱也表明,苯酚阳极液和阳极污泥具有更好的电子传递能力,这是由于苯酚的互养代谢增强了阳极的生物电化学过程,促进了电活性细菌的生命活动。