命名数据网络中时间攻击检测与防御机制研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:talygs
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
命名数据网络(NDN)是当今互联网上以主机为中心的网络的一种替代方案。NDN的一个主要特点是网内缓存,通过在服务器和中间路由器缓存流行的内容,减少访问延迟和查询开销。但是攻击可以利用路由器中的缓存内容侵犯用户的隐私,例如得到用户的上网记录等。该攻击称为时间攻击,是一种根据当前缓存的内容和未缓存的内容的往返时延差异来推断消费者最近是否请求过某些内容的攻击。为了防止隐私泄露,抵御这类攻击,本文做了以下工作:(1)本文提出了一种检测方案。它采用缓存命中率、平均请求时间间隔、请求频率和请求内容类型作为时间攻击的特征值,为了及时捕获这些特征值,此方案将一个恒定大小的时间窗口划分成几个小的时间片,在这些小的时间上抽取流量的特征。最后,训练了一个LSTM(Long ShortTerm Memory)模型来检测时间攻击。(2)本文设计了一个基于分组的隐私保护协作缓存策略在提升网络性能的同时保证了用户的隐私。该方案首先提出一个基于贪婪的分组算法。根据节点之间的缓存相似性和信息熵将中间节点进行分组,来提高消费者的匿名性。然后,在组内采用一致性哈希思想来减少组内缓存内容的冗余并设计了一个启发式算法解决一致性哈希中负载不均衡的问题。最后,实现了组内兴趣包的路由转发,使兴趣包可以安全地在组内外进行传输。本文基于流行的命名数据网络仿真工具ndnSIM在分类精度、检测率、误报率和Fmeasure等方面对检测方案进行评估并且在平均跳数、缓存命中率、匿名集和信息熵等方面对防御机制进行评估。实验结果表明本文提出的时间攻击检测方案能很好地检测时间攻击以及防御策略不仅保护了用户的隐私而且具有不错的缓存性能。
其他文献
目的通过本课题研究脉泻剂“甘露养心丸”治疗慢性心力衰竭模型大鼠,观察脉泻剂“甘露养心丸”对BNP与心功能+dp/dtmax,-dp/dtmax,m LVSP,m LVDP的影响,探讨脉泻剂“甘露养心丸”的机制机理;为脉泻剂“甘露养心丸”提供科学依据。方法选取健康SD大鼠84只(体重180-220g),随机分为甘露养心丸高剂量组、甘露养心丸中剂量组、甘露养心丸低剂量组、西药对照组、模型组、空白组,共
转录因子c-Myb是造血过程中非常重要的调节因子,在细胞的增殖、分化和凋亡等过程中发挥着重要的作用。c-myb在造血祖细胞中表达量很高,随着细胞的分化,它的表达量会降低甚至会不表达。近期关于c-myb的异常表达会引发各种癌症,如白血病,乳腺癌,结肠癌的报道引起了人们的高度重视。尽管有很多报道阐述了关于c-myb表达调控机制的研究,但是由于c-myb缺乏典型的启动子并且有多种因子参与其中,因此了解c
识别文本图像是计算机视觉领域的一个重要研究课题。随着深度学习理论技术的发展,对于背景简单且规则的场景文本,人们已提出比较成熟的基于深度神经网络的解决方案,其结果明
叶顶间隙的存在对涡轮的性能以及叶片通道流场都有非常大的影响,而对间隙泄漏流流动特征的研究对于提高涡轮性能具有非常重要的意义。目前的研究普遍认为,当叶顶间隙高度改变时,涡轮的性能、间隙泄漏涡的结构和大小、以及涡轮流场的非定常特性等都会随之发生变化。但是在涡轮叶片实际工作环境中,除了受到气动力的影响之外,往往还遭受高温燃气的冲击以及转子叶片高转速所带来的高离心力的作用,因此会造成叶片的变形,从而导致间
冠状动脉粥样硬化性心脏病简称冠心病,是世界范围内死亡率最高的疾病。冠心病是冠状动脉中的脂质、胆固醇、钙和其他物质沉积形成粥样硬化斑块而引起冠脉狭窄或阻塞,造成心肌缺血或坏死而导致的心脏病。粥样硬化斑块破裂会形成血栓,引发心肌梗死等一系列急性心血管事件。冠心病治疗的目的是控制斑块的形成和预防斑块的破裂,因此早期识别并分类斑块是介入治疗冠心病的前提。冠脉斑块诊断常用的成像技术分为侵入式和非侵入式两类,
经验模态分解(Empirical Mode Decomposition,EMD)方法是继快速傅立叶变换和小波分析之后,与20世纪末提出的一种新的信号处理与分解方法,擅长分析非平稳、非线性信号,该方法
基于麦克风阵列的声源定位技术即利用麦克风阵列对目标声源进行信号采集,对信号进行处理之后结合声源定位算法计算出声源的方位信息。随着数字阵列信号处理技术的快速发展,通
社区矫正作为非监禁刑的特殊代表,伴随人文主义精神与行刑监督社会化、个别化和科学化理念的兴起,综合节约刑罚经济成本与罪犯再社会化率较高的现实考量,自欧美国家改革传统
电力线通信(Power Line Communication,PLC)利用现存基础设施完善的输电线路进行信息的传递与交互。电力线系统的主要职责是供配电而非实现通信,相比专用于通信的系统,其信道
无论在日常生活还是军事上,微飞行器都有极其广阔的应用前景。近十年里,微飞行器已经成为飞行器领域的一大研究热点。由于其体积小、灵活性高、隐蔽性强,微型飞行器可以在复杂的地形完成各种任务。微飞行器主要可以拆分为机械系统和动力系统,由压电驱动器为核心组成的动力系统将直接影响到微飞行器的飞行能力,是否可以得到满足微飞行器要求的动力系统是关键环节。本文的研究对象是指甲尺度的微飞行器,主要对微飞行器的动力系统