论文部分内容阅读
道路交通状态估计是交通安全管理中的重要课题,也是是智能交通系统能够正常运行并发挥作用的前提和基础。交通控制和诱导系统需要对下一时刻乃至以后一些时刻的道路交通状态做出准确的估计和判断,才能做出正确的决策。只有对交通参与者做出及时的控制和诱导,才能有效地确保交通畅通和减少道路安全隐患。另外,准确的交通状态估计也是进行交通事故检测的必要条件。目前,国内外学者大多采用卡尔曼滤波和扩展卡尔曼滤波等线性方法来解决交通状态估计问题。这些方法能够在一定程度上解决道路交通状态估计问题,并且得到了广泛的应用。然而,由于交通参与者之间存在各种复杂的相互影响,使得交通行为具有高度的非线性。而卡尔曼滤波方法假设系统模型和观测模型服从线性分布,并且系统噪声和观测噪声服从高斯分布。这就使得基于卡尔曼滤波的估计方法存在很大的误差,从而表现出一定的局限性。粒子滤波是一种通过蒙特卡罗积分仿真来实现对贝叶斯滤波器递推的技术,它不做任何线性高斯假设,是一种非线性的预测方法。本文通过仿真实验对该方法进行了深入的学习和研究,并通过与线性方法EKF滤波器的对比,验证了其在解决非线性问题时的有效性。另外,针对复杂路段下传统方法的缺陷,本文将粒子滤波方法应用到处理交通状态估计问题中。通过研究二阶宏观随机交通流模型对北京城市快速路建模,并基于Matlab平台进行交通状态估计。实验结果表明,粒子滤波算法能够对道路交通流的参数指标做出较好的估计,具有良好的适用性。然而,在实验过程中发现,随着迭代次数的增加,只有少数样本具有较大的权值,一些权值较小的粒子会出现退化现象。这不但浪费了大量计算在小权值粒子上,而且也影响了样本粒子的多样化。针对这些问题,本文尝试性地将蚁群算法的思想引入到粒子滤波算法过程中,来优化粒子滤波算法的重采样过程。运用改进后的粒子滤波算法进行实例验证并与基本滤波算法进行对比,实验结果表明,该方法具有良好的准确性和鲁棒性。