摩擦剪切对铂基块体金属玻璃纳米尺度塑性变形影响的研究

来源 :西南科技大学 | 被引量 : 0次 | 上传用户:camel1650
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
金属玻璃的塑性变形行为一直是非晶领域的研究热点,目前针对该问题学者们已经从宏观到微纳观尺度关注了其摩擦学响应,在为数不多的金属玻璃相关AFM纳米划痕研究中,无论是通过溅射获得的金属玻璃薄膜,还是通过抛光获得的块体金属玻璃,虽然样品表面粗糙度仅1~2 nm,但对于AFM纳米划痕实验却是远远不够的。为了深化对金属玻璃在微观尺度下塑性变形机理的理解和认识,有必要开展原子级平整的金属玻璃在纳米尺度下的AFM划痕研究。为此,采用原子力显微镜纳米划痕技术,基于原子级平整的Pt基金属玻璃,研究了不同法向载荷对Pt基金属玻璃在原子尺度下单次划痕摩擦行为的影响,并在同样工况下开展Pt(111)的实验作为对比,讨论了金属玻璃与晶态合金之间摩擦学响应的异同;根据单次划痕的实验结果,深入研究了不同载荷和循环次数对Pt基金属玻璃磨损行为的影响,定量分析了在不同载荷下界面摩擦和犁沟摩擦对其摩擦磨损行为的贡献,采用深度预测模型修正了Pt基金属玻璃在划痕过程中的弹性模量变化,揭示了纳米尺度下金属玻璃的摩擦磨损机理。基于上述实验,本文的主要结论有:(1)原子级平整的表面使得Pt基金属玻璃的潜在变形阶段被首次观察到,并提出了原子剪切增稠模型来解释潜在变形阶段过程中金属玻璃内部结构的变化,这有助于从原子尺度上理解金属玻璃发生明显塑性流动前内部原子的运动过程。(2)原子级平整的Pt(111)在低载荷划痕后表面出现隆起的现象被首次观察到,这归因于剪切应力导致的结构非晶化,并最终形成高度为几埃米的隆起,这为实现铂材料的纳米摩擦诱导加工提供了新的思路。(3)Pt基金属玻璃同类金刚石AFM针尖往复对摩时的摩擦系数在常温常湿下处于约0.2~0.4,摩擦系数在给定载荷范围内,随着载荷的增加,呈先减小后增大的趋势;随循环次数的增加,始终呈降低趋势。在56 n N低载下,界面摩擦占主导,但随着法向载荷增大至345 n N,犁沟摩擦逐渐占主导。在相同载荷下,随循环次数的增加,犁沟摩擦占比逐渐降低,这是由于交变剪切应力下的加工硬化作用阻碍了犁沟效应。(4)在给定载荷下,Pt基金属玻璃的往复磨损深度在0.05 nm至1.49 nm间变化,实现了金属玻璃在原子尺度的材料去除。交变剪切应力导致的加工硬化增强了划痕区域的机械性能,使得金属玻璃的磨损程度随循环次数的增加而逐渐缓和。
其他文献
随着电力企业改革的不断加深,如何有效地控制运营成本成为每个电力企业都急需解决的问题。而电力负荷预测不仅能够保证电网的安全运行,还是决定电网经济运行的关键因素。因此,如何提高电力负荷预测的精准度是现如今电力企业急需解决的一个难点。本文调研了电力负荷预测方法的发展历程,研究了短期负荷预测的多种方法。收集和整理了历史电力负荷及相关影响因素的数据,并对其做了插补、去噪和归一化处理。随后分别建立了基于BP、
学位
目前,软体机器人已成为机械领域内研究的热点,然而,软体机器人的结构、驱动及控制方面仍存在许多值得深入研究的课题。弹性杆的稳定性模型在生命科学和诸多工程领域中得到了广泛应用,但将其运用于软体机器人的研究鲜有报道。本研究基于环形弹性杆在扭转作用下的循环失稳特性,提出了一种单自由度控制、功能-结构一体化的柔性传动机构,并将其作为波动式驱动装置应用于仿生机器鱼。首先,建立了环形弹性杆的力学模型,并依此对环
学位
微注塑成型技术因具有工艺简单、成型周期短等优点成为微纳制造的热点,高效化、低成本的生产原则使得发展一模多腔微注塑成型技术成为必然趋势。由于高剪切速率和尺度效应使其与传统注塑充填流动不同,必将引发新的充填不平衡问题和现象。本文基于此,采用数值模拟方法,以高密度聚乙烯(HDPE)及聚甲醛(POM)材料,研究微尺度下的关键影响因素包括壁面滑移、微尺度效应、对流换热以及工艺参数等对微尺度充填不平衡影响规律
学位
跳跃机器人在复杂环境中的更强越障、更快躲避危险等优点吸引了许多研究者,对跳跃机器人的结构、驱动、控制进行研究已是热点课题。对如水面、废墟等特殊环境,传统跳跃机器人只通过优化结构等方式,已无法适用,因此,研究一种新型驱动下的小型跳跃机器人并实现其可控,对拓宽机器人作业领域具有重要作用。本文为了设计一种在具备跳跃、负重、可转向等多运动能力的基础上可控的小型跳跃机器人,研究对比了多种驱动方案,选择了可控
学位
再生混凝土技术的运用和发展,能够有效减少我国对建筑材料的浪费,提高对废弃混凝土的循环利用率,减少建筑垃圾,从而美化人们的生态坏境,提高生活质量。再生混凝土和外包钢管的组合,克服了再生混凝土与普通混凝土相比存在一定程度劣化的缺陷,但目前对钢管再生混凝土柱的研究大多集中于圆形、方形等截面,对T形截面的钢管再生混凝土柱研究则较少。因此,开展此类构件轴压性能的研究,对促进工程实践应用具有重要的意义。本文采
学位
金属玻璃因为大的弹性极限、高的强度、优越的耐磨性、良好的软磁特性、优异的生物相容性等性能被广泛应用于工业、交通、航天、军事和医学领域,这些性能都与其独特的非晶结构有关。然而无序的非晶结构使得金属玻璃的纳米摩擦学性能与其结构的关系难以建立,阻碍了具有优异性能的金属玻璃的设计和制备。为此,本文制备了假想温度为:320℃、370℃、410℃的块体Zr基金属玻璃,建立了假想温度与金属玻璃自由体积的关系,然
学位
在机加车间中,因工作人员疏忽或未能及时发现并处理的安全隐患导致安全事故频繁发生,给企业造成了巨大的损失。虽然通过安全培训能提高工作人员的安全意识,进而降低安全事故的发生率,但由于个人素质、行为习惯等差异,安全事故很难杜绝,同时也难以实现人力监管。基于深度学习的计算机视觉技术,因其检测精度高,被应用于自动驾驶、人机交互等行业中。本文利用深度学习技术,对机加车间内物体的摆放状态、工作人员的动作以及行为
学位
随着我国核电产业的高速发展,核电厂在运行过程中面临的各种安全问题也越来越受到重视。在核电厂运维过程中,部分工作仍需要人工进行现场操作,其高辐照环境可能会对操作人员造成不可逆身体损伤。通过外部控制机器人代替人工完成相应的工作,成为了目前主流的方法。本文研究课题来自国家科技重大专项“CAP1400核电厂智能运维关键技术研究项目”:针对机器人代替人工进行堆外核测探测器安装的需求,设计了一款能够在狭窄堆腔
学位
空间姿态的精确测量及调整在装备的装配对接、质量检测等工艺过程中具有关键支撑作用,然而,在大尺度测量环境中设备跨度大,现场环境复杂,常因物体结构、工件遮挡以及凹陷等因素导致物体固有特征点间形成阻隔,从而难以实现物体姿态的实时测量及调整。目前,基于激光跟踪仪、摄影及室内定位等的多站测量技术结合三坐标定位器是解决阻隔空间姿态测量及调整问题的主要方式,但是其成本较高、空间基准统一复杂,并且受时间同步误差及
学位
在航空发动机状态监测领域,尾喷流中的异常颗粒物作为发动机气路早期故障的直接产物,实现其参数测量对于评估发动机气路损伤程度、建立性能退化预测机制等方面具有重要意义。尽管目前已有多种先进的测量手段,如激光多普勒、粒子图像测速以及数字全息技术等,但受测量精度、测试效率、环境要求等因素限制而无法直接应用于工业现场。为此,本文利用高速摄像技术开展航空发动机尾喷流中颗粒物的运动参数测量研究。分析了航空发动机尾
学位