论文部分内容阅读
目前,基于光纤通信技术已构建了全球化的全光通信网络,但是,长距离的光纤通信会导致光信号的损耗,因此,在全光通信网络中需要一种能够放大光信号的器件,即光放大器,这种器件能够将损耗后的信号放大为正常信号。在光放大器中,掺稀土元素的平面光波导放大器具备制作工艺简单、集成化高、增益性能强的特点,成为近年来的研究热点。光波导放大器一般采用980nm或808nm等波长的半导体激光器作为泵浦源,根据稀土离子对这些泵浦波长的本征吸收来实现粒子数反转,从而产生增益。而采用稀土离子配合物材料制备的平面光波导放大器,可利用有机配体在200nm-450nm波长处具有连续、较强吸收带的特点,将低功率、低成本的LED光源替代价格昂贵的半导体激光器作为泵浦源,降低了器件应用的成本,可望得到广泛的应用。本文提出了将有机配体与中心稀土离子之间的分子内能量传递作用应用于平面光波导放大器的理论与实验可能性,对Yb-DPE(二季戊四醇镱)和Yb-DBT(二苯并噻吩镱)两种掺镱配合物材料和一种掺铒配合物材料ErQ3(三(8-羟基喹啉)铒)进行了吸收、发射、成膜等特性研究,探讨了基于分子内能量传递作用的掺稀土元素有机光波导放大器的制作工艺。具体工作如下:1.根据有机配体Q(8-羟基喹啉)与Er3+离子之间的分子内能量传递机制,建立了掺铒有机光波导放大器中的原子速率方程和光功率传输方程,基于重叠积分因子和龙格-库塔法对方程进行简化,计算出模拟增益,结果表明:当波导长度为2cm,波导横截面大小为3.6×10-11m2时,在350 nm LED激发下,当泵浦光功率为1mW时,可开始产生增益,当泵浦光功率达到3.5mW时,理论上可获得5.4dB的光增益。2.对掺铒配合物ErQ3粉末进行了紫外可见近红外吸收光谱和350nm波长LD激发下的荧光光谱表征,结果证明铒配合物ErQ3存在分子内能量传递机制,配体能够将吸收的蓝紫外波段的光能量传递给中心Er3+离子,实现1535nm波长信号光的放大。制备了铒配合物ErQ3掺杂的甲基丙烯酸甲酯(PMMA)有机聚合物薄膜,对薄膜的吸收光谱进行了表征。3.根据有机配体DBT(二苯并噻吩)和DPE(二季戊四醇)与Yb3+离子之间的分子内能量传递机制,建立了掺镱有机光波导放大器中的原子速率方程和光功率传输方程,理论计算出材料的增益性能,结果表明:当波导长度为2cm,波导横截面大小为3.6×10-11 m2时,在405nm LED激发下,当泵浦光功率达到1.5mW时,可开始产生增益,当泵浦光功率达到6mW时,理论上可获得5.1dB的光增益。4.制备了两种掺杂镱配合物Yb-DBT和Yb-DPE的甲基丙烯酸甲酯(PMMA)有机薄膜,对这两种镱配合物的粉末和薄膜的紫外可见近红外吸收光谱和405nm LD和LED激发下的荧光光谱进行了表征。结果表明DBT和DPE两种配体与中心Yb3+离子之间存在分子内能量传递机制,材料可望实现980nm近红外波段的光放大。5.研究了镱配合物、铒配合物材料的器件化条件,分别设计并制备了适合材料的嵌入型光波导,搭建了测试系统,获得了信号光在波导输出端的近场光斑。